Data
anneal

anneal

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2300 study_2300 study_2300 study_2 study_7 study_12 study_13 study_29 study_30 study_33 study_41 study_47 study_51 study_53 study_58 study_63 study_68 study_73 study_78 study_83 study_88 study_93 study_100 study_103 study_104 study_106 study_118 study_126 study_131 study_136 study_142 study_150 study_152 study_153 study_157 study_162 study_169 study_177 study_178 study_184 study_189 study_192 study_199 study_206 study_210 study_211 study_219 study_224 study_229 study_234 study_239 study_244 study_250 study_255 study_260 study_268 study_270 study_275 study_280 study_284 study_290 study_295 study_300 study_302 study_310 study_316 study_321 study_326 study_334 study_336 study_341 study_345 study_351 study_356 study_362 study_370 study_373 study_376 study_387 study_388 study_391 study_396 study_401 study_406 study_411 study_416 study_422 study_426 study_430 study_436 study_441 study_446 study_450 study_456 study_460 study_466 study_471 study_476 study_477 study_488 study_491 study_496 study_501 study_509 study_512 study_516 study_517 study_522 study_531 study_535 study_542 study_546 study_549 study_552 study_565 study_568 study_577 study_579 study_583 study_586 study_591 study_592 study_601 study_606 study_611 study_616 study_621 study_626 study_629 study_633 study_640 study_642 study_643 study_648 study_650 study_657 study_658 study_663 study_664 study_672 study_677 study_678 study_688 study_690 study_691 study_700 study_701 study_710 study_718 study_720 study_728 study_734 study_735 study_740 study_745 study_750 study_755 study_762 study_764 study_774 study_775 study_784 study_789 study_793 study_794 study_798 study_801 study_802 study_803 study_820 study_823 study_831 study_833 study_836 study_838 study_840 study_847 study_852 study_853 study_860 study_865 study_869 study_878 study_883 study_889 study_890 study_895 study_898 study_901 study_908 study_913 study_918 study_923 study_928 study_929 study_936 study_943 study_948 study_951 study_956 study_963 study_969 study_974 study_975 study_976 study_985 study_988 study_989 study_991 study_999 study_1008 study_1018 study_1019 study_1021 study_1022 study_1023 study_1032 study_1033 study_1046 study_1047 study_1052 study_1053 study_1060 study_1061 study_1069 study_1072 study_1083 study_1084 study_1094 study_1098 study_1100 study_1110 study_1111 study_1116 study_1121 study_1126 study_1131 study_1136 study_1141 study_1149 study_1154 study_1164 study_1170 study_1171 study_1172 study_1182 study_1183 study_1189 study_1196 study_1200 study_1202 study_1208 study_1213 study_1218 study_1220 study_1226 study_1235 study_1240 study_1241 study_1242 study_1257 study_1258 study_1259 study_1269 study_1271 study_1281 study_1283 study_1289 study_1293 study_1298 study_1303 study_1304 study_1314 study_1316 study_1320 study_1326 study_1331 study_1336 study_1345 study_1353 study_1358 study_1368 study_1369 study_1370 study_1381 study_1382 study_1384 study_1392 study_1393 study_1401 study_1403 study_1404 study_1410 study_1413 study_1415 study_1426 study_1427 study_1434 study_1438 study_1440 study_1448 study_1459 study_1468 study_1471 study_1476 study_1482 study_1483 study_1484 study_1485 study_1492 study_1498 study_1502 study_1516 study_1521 study_1524 study_1525 study_1535 study_1537 study_1538 study_1545 study_1550 study_1551 study_1557 study_1567 study_1573 study_1580 study_1585 study_1589 study_1592 study_1598 study_1599 study_1601 study_1611 study_1614 study_1619 study_1622 study_1633 study_1641 study_1642 study_1643 study_1645 study_1656 study_1665 study_1669 study_1673 study_1678 study_1682 study_1687 study_1692 study_1695 study_1696 study_1697 study_1706 study_1710 study_1711 study_1725 study_1730 study_1733 study_1743 study_1745 study_1750 study_1751 study_1752 study_1755 study_1760 study_1774 study_1775 study_1776 study_1788 study_1789 study_1804 study_1806 study_1811 study_1816 study_1821 study_1827 study_1832 study_1837 study_1842 study_1843 study_1852 study_1857 study_1861 study_1866 study_1872 study_1877 study_1881 study_1883 study_1891 study_1899 study_1904 study_1909 study_1912 study_1917 study_1922 study_1927 study_1928 study_1932 study_1939 study_1941 study_1943 study_1961 study_1966 study_1967 study_1974 study_1980 study_1982 study_1983 study_1992 study_1999 study_2002 study_2007 study_2010 study_2012 study_2013 study_2028 study_2033 study_2037 study_2042 study_2047 study_2052 study_2060 study_2062 study_2070 study_2072 study_2077 study_2081 study_2087 study_2088 study_2097 study_2102 study_2109 study_2112 study_2117 study_2126 study_2127 study_2132 study_2133 study_2143 study_2150 study_2153 study_2157 study_2160 study_2162 study_2171 study_2177 study_2183 study_2191 study_2194 study_2197 study_2202 study_2203 study_2210 study_2221 study_2222 study_2227 study_2232 study_2234 study_2243 study_2251 study_2252 study_2256 study_2264 study_2265 study_2272 study_2277 study_2281 study_2287 study_2296 study_2 study_7 study_12 study_13 study_29 study_30 study_33 study_41 study_47 study_51 study_53 study_58 study_63 study_68 study_73 study_78 study_83 study_88 study_93 study_100 study_103 study_104 study_106 study_118 study_126 study_131 study_136 study_142 study_150 study_152 study_153 study_157 study_162 study_169 study_177 study_178 study_184 study_189 study_192 study_199 study_206 study_210 study_211 study_219 study_224 study_229 study_234 study_239 study_244 study_250 study_255 study_260 study_268 study_270 study_275 study_280 study_284 study_290 study_295 study_300 study_302 study_310 study_316 study_321 study_326 study_334 study_336 study_341 study_345 study_351 study_356 study_362 study_370 study_373 study_376 study_387 study_388 study_391 study_396 study_401 study_406 study_411 study_416 study_422 study_426 study_430 study_436 study_441 study_446 study_450 study_456 study_460 study_466 study_471 study_476 study_477 study_488 study_491 study_496 study_501 study_509 study_512 study_516 study_517 study_522 study_531 study_535 study_542 study_546 study_549 study_552 study_565 study_568 study_577 study_579 study_583 study_586 study_591 study_592 study_601 study_606 study_611 study_616 study_621 study_626 study_629 study_633 study_640 study_642 study_643 study_648 study_650 study_657 study_658 study_663 study_664 study_672 study_677 study_678 study_688 study_690 study_691 study_700 study_701 study_710 study_718 study_720 study_728 study_734 study_735 study_740 study_745 study_750 study_755 study_762 study_764 study_774 study_775 study_784 study_789 study_793 study_794 study_798 study_801 study_802 study_803 study_820 study_823 study_831 study_833 study_836 study_838 study_840 study_847 study_852 study_853 study_860 study_865 study_869 study_878 study_883 study_889 study_890 study_895 study_898 study_901 study_908 study_913 study_918 study_923 study_928 study_929 study_936 study_943 study_948 study_951 study_956 study_963 study_969 study_974 study_975 study_976 study_985 study_988 study_989 study_991 study_999 study_1008 study_1018 study_1019 study_1021 study_1022 study_1023 study_1032 study_1033 study_1046 study_1047 study_1052 study_1053 study_1060 study_1061 study_1069 study_1072 study_1083 study_1084 study_1094 study_1098 study_1100 study_1110 study_1111 study_1116 study_1121 study_1126 study_1131 study_1136 study_1141 study_1149 study_1154 study_1164 study_1170 study_1171 study_1172 study_1182 study_1183 study_1189 study_1196 study_1200 study_1202 study_1208 study_1213 study_1218 study_1220 study_1226 study_1235 study_1240 study_1241 study_1242 study_1257 study_1258 study_1259 study_1269 study_1271 study_1281 study_1283 study_1289 study_1293 study_1298 study_1303 study_1304 study_1314 study_1316 study_1320 study_1326 study_1331 study_1336 study_1345 study_1353 study_1358 study_1368 study_1369 study_1370 study_1381 study_1382 study_1384 study_1392 study_1393 study_1401 study_1403 study_1404 study_1410 study_1413 study_1415 study_1426 study_1427 study_1434 study_1438 study_1440 study_1448 study_1459 study_1468 study_1471 study_1476 study_1482 study_1483 study_1484 study_1485 study_1492 study_1498 study_1502 study_1516 study_1521 study_1524 study_1525 study_1535 study_1537 study_1538 study_1545 study_1550 study_1551 study_1557 study_1567 study_1573 study_1580 study_1585 study_1589 study_1592 study_1598 study_1599 study_1601 study_1611 study_1614 study_1619 study_1622 study_1633 study_1641 study_1642 study_1643 study_1645 study_1656 study_1665 study_1669 study_1673 study_1678 study_1682 study_1687 study_1692 study_1695 study_1696 study_1697 study_1706 study_1710 study_1711 study_1725 study_1730 study_1733 study_1743 study_1745 study_1750 study_1751 study_1752 study_1755 study_1760 study_1774 study_1775 study_1776 study_1788 study_1789 study_1804 study_1806 study_1811 study_1816 study_1821 study_1827 study_1832 study_1837 study_1842 study_1843 study_1852 study_1857 study_1861 study_1866 study_1872 study_1877 study_1881 study_1883 study_1891 study_1899 study_1904 study_1909 study_1912 study_1917 study_1922 study_1927 study_1928 study_1932 study_1939 study_1941 study_1943 study_1961 study_1966 study_1967 study_1974 study_1980 study_1982 study_1983 study_1992 study_1999 study_2002 study_2007 study_2010 study_2012 study_2013 study_2028 study_2033 study_2037 study_2042 study_2047 study_2052 study_2060 study_2062 study_2070 study_2072 study_2077 study_2081 study_2087 study_2088 study_2097 study_2102 study_2109 study_2112 study_2117 study_2126 study_2127 study_2132 study_2133 study_2143 study_2150 study_2153 study_2157 study_2160 study_2162 study_2171 study_2177 study_2183 study_2191 study_2194 study_2197 study_2202 study_2203 study_2210 study_2221 study_2222 study_2227 study_2232 study_2234 study_2243 study_2251 study_2252 study_2256 study_2264 study_2265 study_2272 study_2277 study_2281 study_2287 study_2296 study_2 study_7 study_12 study_13 study_29 study_30 study_33 study_41 study_47 study_51 study_53 study_58 study_63 study_68 study_73 study_78 study_83 study_88 study_93 study_100 study_103 study_104 study_106 study_118 study_126 study_131 study_136 study_142 study_150 study_152 study_153 study_157 study_162 study_169 study_177 study_178 study_184 study_189 study_192 study_199 study_206 study_210 study_211 study_219 study_224 study_229 study_234 study_239 study_244 study_250 study_255 study_260 study_268 study_270 study_275 study_280 study_284 study_290 study_295 study_300 study_302 study_310 study_316 study_321 study_326 study_334 study_336 study_341 study_345 study_351 study_356 study_362 study_370 study_373 study_376 study_387 study_388 study_391 study_396 study_401 study_406 study_411 study_416 study_422 study_426 study_430 study_436 study_441 study_446 study_450 study_456 study_460 study_466 study_471 study_476 study_477 study_488 study_491 study_496 study_501 study_509 study_512 study_516 study_517 study_522 study_531 study_535 study_542 study_546 study_549 study_552 study_565 study_568 study_577 study_579 study_583 study_586 study_591 study_592 study_601 study_606 study_611 study_616 study_621 study_626 study_629 study_633 study_640 study_642 study_643 study_648 study_650 study_657 study_658 study_663 study_664 study_672 study_677 study_678 study_688 study_690 study_691 study_700 study_701 study_710 study_718 study_720 study_728 study_734 study_735 study_740 study_745 study_750 study_755 study_762 study_764 study_774 study_775 study_784 study_789 study_793 study_794 study_798 study_801 study_802 study_803 study_820 study_823 study_831 study_833 study_836 study_838 study_840 study_847 study_852 study_853 study_860 study_865 study_869 study_878 study_883 study_889 study_890 study_895 study_898 study_901 study_908 study_913 study_918 study_923 study_928 study_929 study_936 study_943 study_948 study_951 study_956 study_963 study_969 study_974 study_975 study_976 study_985 study_988 study_989 study_991 study_999 study_1008 study_1018 study_1019 study_1021 study_1022 study_1023 study_1032 study_1033 study_1046 study_1047 study_1052 study_1053 study_1060 study_1061 study_1069 study_1072 study_1083 study_1084 study_1094 study_1098 study_1100 study_1110 study_1111 study_1116 study_1121 study_1126 study_1131 study_1136 study_1141 study_1149 study_1154 study_1164 study_1170 study_1171 study_1172 study_1182 study_1183 study_1189 study_1196 study_1200 study_1202 study_1208 study_1213 study_1218 study_1220 study_1226 study_1235 study_1240 study_1241 study_1242 study_1257 study_1258 study_1259 study_1269 study_1271 study_1281 study_1283 study_1289 study_1293 study_1298 study_1303 study_1304 study_1314 study_1316 study_1320 study_1326 study_1331 study_1336 study_1345 study_1353 study_1358 study_1368 study_1369 study_1370 study_1381 study_1382 study_1384 study_1392 study_1393 study_1401 study_1403 study_1404 study_1410 study_1413 study_1415 study_1426 study_1427 study_1434 study_1438 study_1440 study_1448 study_1459 study_1468 study_1471 study_1476 study_1482 study_1483 study_1484 study_1485 study_1492 study_1498 study_1502 study_1516 study_1521 study_1524 study_1525 study_1535 study_1537 study_1538 study_1545 study_1550 study_1551 study_1557 study_1567 study_1573 study_1580 study_1585 study_1589 study_1592 study_1598 study_1599 study_1601 study_1611 study_1614 study_1619 study_1622 study_1633 study_1641 study_1642 study_1643 study_1645 study_1656 study_1665 study_1669 study_1673 study_1678 study_1682 study_1687 study_1692 study_1695 study_1696 study_1697 study_1706 study_1710 study_1711 study_1725 study_1730 study_1733 study_1743 study_1745 study_1750 study_1751 study_1752 study_1755 study_1760 study_1774 study_1775 study_1776 study_1788 study_1789 study_1804 study_1806 study_1811 study_1816 study_1821 study_1827 study_1832 study_1837 study_1842 study_1843 study_1852 study_1857 study_1861 study_1866 study_1872 study_1877 study_1881 study_1883 study_1891 study_1899 study_1904 study_1909 study_1912 study_1917 study_1922 study_1927 study_1928 study_1932 study_1939 study_1941 study_1943 study_1961 study_1966 study_1967 study_1974 study_1980 study_1982 study_1983 study_1992 study_1999 study_2002 study_2007 study_2010 study_2012 study_2013 study_2028 study_2033 study_2037 study_2042 study_2047 study_2052 study_2060 study_2062 study_2070 study_2072 study_2077 study_2081 study_2087 study_2088 study_2097 study_2102 study_2109 study_2112 study_2117 study_2126 study_2127 study_2132 study_2133 study_2143 study_2150 study_2153 study_2157 study_2160 study_2162 study_2171 study_2177 study_2183 study_2191 study_2194 study_2197 study_2202 study_2203 study_2210 study_2221 study_2222 study_2227 study_2232 study_2234 study_2243 study_2251 study_2252 study_2256 study_2264 study_2265 study_2272 study_2277 study_2281 study_2287 study_2296
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: 1. Title of Database: Annealing Data 2. Source Information: donated by David Sterling and Wray Buntine. 3. Past Usage: unknown 4. Relevant Information: -- Explanation: I suspect this was left by Ross Quinlan in 1987 at the 4th Machine Learning Workshop. I'd have to check with Jeff Schlimmer to double check this. 5. Number of Instances: 798 6. Number of Attributes: 38 -- 6 continuously-valued -- 3 integer-valued -- 29 nominal-valued 7. Attribute Information: 1. family: --,GB,GK,GS,TN,ZA,ZF,ZH,ZM,ZS 2. product-type: C, H, G 3. steel: -,R,A,U,K,M,S,W,V 4. carbon: continuous 5. hardness: continuous 6. temper_rolling: -,T 7. condition: -,S,A,X 8. formability: -,1,2,3,4,5 9. strength: continuous 10. non-ageing: -,N 11. surface-finish: P,M,- 12. surface-quality: -,D,E,F,G 13. enamelability: -,1,2,3,4,5 14. bc: Y,- 15. bf: Y,- 16. bt: Y,- 17. bw/me: B,M,- 18. bl: Y,- 19. m: Y,- 20. chrom: C,- 21. phos: P,- 22. cbond: Y,- 23. marvi: Y,- 24. exptl: Y,- 25. ferro: Y,- 26. corr: Y,- 27. blue/bright/varn/clean: B,R,V,C,- 28. lustre: Y,- 29. jurofm: Y,- 30. s: Y,- 31. p: Y,- 32. shape: COIL, SHEET 33. thick: continuous 34. width: continuous 35. len: continuous 36. oil: -,Y,N 37. bore: 0000,0500,0600,0760 38. packing: -,1,2,3 classes: 1,2,3,4,5,U -- The '-' values are actually 'not_applicable' values rather than 'missing_values' (and so can be treated as legal discrete values rather than as showing the absence of a discrete value). 8. Missing Attribute Values: Signified with "?" Attribute: Number of instances missing its value: 1 0 2 0 3 70 4 0 5 0 6 675 7 271 8 283 9 0 10 703 11 790 12 217 13 785 14 797 15 680 16 736 17 609 18 662 19 798 20 775 21 791 22 730 23 798 24 796 25 772 26 798 27 793 28 753 29 798 30 798 31 798 32 0 33 0 34 0 35 0 36 740 37 0 38 789 39 0 9. Distribution of Classes Class Name: Number of Instances: 1 8 2 88 3 608 4 0 5 60 U 34 --- 798

39 features

class (target)nominal5 unique values
0 missing
phosnominal1 unique values
891 missing
chromnominal1 unique values
872 missing
cbondnominal1 unique values
824 missing
marvinominal0 unique values
898 missing
exptlnominal1 unique values
896 missing
ferronominal1 unique values
868 missing
corrnominal0 unique values
898 missing
blue%2Fbright%2Fvarn%2Fcleannominal3 unique values
892 missing
lustrenominal1 unique values
847 missing
jurofmnominal0 unique values
898 missing
snominal0 unique values
898 missing
pnominal0 unique values
898 missing
shapenominal2 unique values
0 missing
thicknumeric50 unique values
0 missing
widthnumeric68 unique values
0 missing
lennumeric24 unique values
0 missing
oilnominal2 unique values
834 missing
borenominal3 unique values
0 missing
packingnominal2 unique values
889 missing
surface-finishnominal1 unique values
889 missing
product-typenominal1 unique values
0 missing
steelnominal7 unique values
86 missing
carbonnumeric10 unique values
0 missing
hardnessnumeric7 unique values
0 missing
temper_rollingnominal1 unique values
761 missing
conditionnominal2 unique values
303 missing
formabilitynominal4 unique values
318 missing
strengthnumeric8 unique values
0 missing
non-ageingnominal1 unique values
793 missing
familynominal2 unique values
772 missing
surface-qualitynominal4 unique values
244 missing
enamelabilitynominal2 unique values
882 missing
bcnominal1 unique values
897 missing
bfnominal1 unique values
769 missing
btnominal1 unique values
824 missing
bw%2Fmenominal2 unique values
687 missing
blnominal1 unique values
749 missing
mnominal0 unique values
898 missing

107 properties

898
Number of instances (rows) of the dataset.
39
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
22175
Number of missing values in the dataset.
898
Number of instances with at least one value missing.
6
Number of numeric attributes.
33
Number of nominal attributes.
0.61
Average class difference between consecutive instances.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.19
Entropy of the target attribute values.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.23
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.04
Number of attributes divided by the number of instances.
26.84
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
76.17
Percentage of instances belonging to the most frequent class.
684
Number of instances belonging to the most frequent class.
1.82
Maximum entropy among attributes.
13.22
Maximum kurtosis among attributes of the numeric type.
1263.09
Maximum of means among attributes of the numeric type.
0.41
Maximum mutual information between the nominal attributes and the target attribute.
7
The maximum number of distinct values among attributes of the nominal type.
3.76
Maximum skewness among attributes of the numeric type.
1871.4
Maximum standard deviation of attributes of the numeric type.
0.25
Average entropy of the attributes.
4.65
Mean kurtosis among attributes of the numeric type.
348.5
Mean of means among attributes of the numeric type.
0.04
Average mutual information between the nominal attributes and the target attribute.
4.67
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1.64
Average number of distinct values among the attributes of the nominal type.
2.03
Mean skewness among attributes of the numeric type.
405.17
Mean standard deviation of attributes of the numeric type.
-0
Minimal entropy among attributes.
-0.97
Minimum kurtosis among attributes of the numeric type.
1.2
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0
The minimal number of distinct values among attributes of the nominal type.
0.07
Minimum skewness among attributes of the numeric type.
0.87
Minimum standard deviation of attributes of the numeric type.
0.89
Percentage of instances belonging to the least frequent class.
8
Number of instances belonging to the least frequent class.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
4
Number of binary attributes.
10.26
Percentage of binary attributes.
100
Percentage of instances having missing values.
63.32
Percentage of missing values.
15.38
Percentage of numeric attributes.
84.62
Percentage of nominal attributes.
0
First quartile of entropy among attributes.
-0.4
First quartile of kurtosis among attributes of the numeric type.
3.03
First quartile of means among attributes of the numeric type.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.97
First quartile of skewness among attributes of the numeric type.
10.51
First quartile of standard deviation of attributes of the numeric type.
0
Second quartile (Median) of entropy among attributes.
1.64
Second quartile (Median) of kurtosis among attributes of the numeric type.
21.22
Second quartile (Median) of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.65
Second quartile (Median) of skewness among attributes of the numeric type.
69.85
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.24
Third quartile of entropy among attributes.
12.74
Third quartile of kurtosis among attributes of the numeric type.
901.26
Third quartile of means among attributes of the numeric type.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
3.75
Third quartile of skewness among attributes of the numeric type.
771.86
Third quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
1.56
Standard deviation of the number of distinct values among attributes of the nominal type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.83
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

26 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
2 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task