Data
anneal

anneal

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 test_lazy_tag_651856 study_1 study_3 study_9 study_12 study_15 study_18 study_21 study_23 study_26 study_30 study_32 study_33 study_35 study_42 study_46 study_47 study_51 study_55 study_61 study_64 study_65 study_67 study_70 study_71 study_83 study_86 study_89 study_92 study_94 study_98 study_101 study_104 study_105 study_111 study_114 study_116 study_123 study_126 study_127 study_129 study_133 study_134 study_141 study_142 study_147 study_152 study_153 study_157 study_161 study_163 study_166 study_169 study_174 study_175 study_178 study_180 study_184 study_187 study_190 study_195 study_196 study_200 study_205 study_208 study_209 study_210 study_217 study_219 study_220 study_226 study_229 study_232 study_236 study_237 study_241 study_244 study_247 study_252 study_253 study_256 study_261 study_263 study_264 study_268 study_272 study_275 study_276 study_283 study_284 study_287 study_292 study_294 study_297 study_298 study_302 study_305 study_308 study_312 study_313 study_316 study_320 study_323 study_324 study_329 study_332 study_335 study_338 study_341 study_344 study_347 study_350 study_354 study_358 study_361 study_363 study_365 study_368 study_369 study_374 study_375 study_380 study_382 study_386 study_389 study_392 study_396 study_400 study_401 study_402 study_408 study_410 study_413 study_416 study_419 study_422 study_426 study_428 study_431 study_435 study_437 study_440 study_443 study_446 study_449 study_454 study_459 study_462 study_466 study_467 study_472 study_474 study_477 study_478 study_481 study_486 study_489 study_491 study_496 study_498 study_501 study_505 study_507 study_510 study_515 study_516 study_520 study_522 study_524 study_528 study_532 study_534 study_3 study_9 study_12 study_15 study_18 study_21 study_23 study_26 study_30 study_32 study_33 study_35 study_42 study_46 study_47 study_51 study_55 study_61 study_64 study_65 study_67 study_70 study_71 study_83 study_86 study_89 study_92 study_94 study_98 study_101 study_104 study_105 study_111 study_114 study_116 study_123 study_126 study_127 study_129 study_133 study_134 study_141 study_142 study_147 study_152 study_153 study_157 study_161 study_163 study_166 study_169 study_174 study_175 study_178 study_180 study_184 study_187 study_190 study_195 study_196 study_200 study_205 study_208 study_209 study_210 study_217 study_219 study_220 study_226 study_229 study_232 study_236 study_237 study_241 study_244 study_247 study_252 study_253 study_256 study_261 study_263 study_264 study_268 study_272 study_275 study_276 study_283 study_284 study_287 study_292 study_294 study_297 study_298 study_302 study_305 study_308 study_312 study_313 study_316 study_320 study_323 study_324 study_329 study_332 study_335 study_338 study_341 study_344 study_347 study_350 study_354 study_358 study_361 study_363 study_365 study_368 study_369 study_374 study_375 study_380 study_382 study_386 study_389 study_392 study_396 study_400 study_401 study_402 study_408 study_410 study_413 study_416 study_419 study_422 study_426 study_428 study_431 study_435 study_437 study_440 study_443 study_446 study_449 study_454 study_459 study_462 study_466 study_467 study_472 study_474 study_477 study_478 study_481 study_486 study_489 study_491 study_496 study_498 study_501 study_505 study_507 study_510 study_515 study_516 study_520 study_522 study_524 study_528 study_532 study_534 study_3 study_9 study_12 study_15 study_18 study_21 study_23 study_26 study_30 study_32 study_33 study_35 study_42 study_46 study_47 study_51 study_55 study_61 study_64 study_65 study_67 study_70 study_71 study_83 study_86 study_89 study_92 study_94 study_98 study_101 study_104 study_105 study_111 study_114 study_116 study_123 study_126 study_127 study_129 study_133 study_134 study_141 study_142 study_147 study_152 study_153 study_157 study_161 study_163 study_166 study_169 study_174 study_175 study_178 study_180 study_184 study_187 study_190 study_195 study_196 study_200 study_205 study_208 study_209 study_210 study_217 study_219 study_220 study_226 study_229 study_232 study_236 study_237 study_241 study_244 study_247 study_252 study_253 study_256 study_261 study_263 study_264 study_268 study_272 study_275 study_276 study_283 study_284 study_287 study_292 study_294 study_297 study_298 study_302 study_305 study_308 study_312 study_313 study_316 study_320 study_323 study_324 study_329 study_332 study_335 study_338 study_341 study_344 study_347 study_350 study_354 study_358 study_361 study_363 study_365 study_368 study_369 study_374 study_375 study_380 study_382 study_386 study_389 study_392 study_396 study_400 study_401 study_402 study_408 study_410 study_413 study_416 study_419 study_422 study_426 study_428 study_431 study_435 study_437 study_440 study_443 study_446 study_449 study_454 study_459 study_462 study_466 study_467 study_472 study_474 study_477 study_478 study_481 study_486 study_489 study_491 study_496 study_498 study_501 study_505 study_507 study_510 study_515 study_516 study_520 study_522 study_524 study_528 study_532 study_534 study_72 study_74 study_75 study_76 study_77 study_78 study_79 study_80 study_117 study_456 study_536 study_167 study_172 study_238 study_239 study_265 study_266 study_277 study_429 study_438 study_444 study_447 study_450 study_452 study_457 study_504 study_508 study_533 study_535
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: 1. Title of Database: Annealing Data 2. Source Information: donated by David Sterling and Wray Buntine. 3. Past Usage: unknown 4. Relevant Information: -- Explanation: I suspect this was left by Ross Quinlan in 1987 at the 4th Machine Learning Workshop. I'd have to check with Jeff Schlimmer to double check this. 5. Number of Instances: 798 6. Number of Attributes: 38 -- 6 continuously-valued -- 3 integer-valued -- 29 nominal-valued 7. Attribute Information: 1. family: --,GB,GK,GS,TN,ZA,ZF,ZH,ZM,ZS 2. product-type: C, H, G 3. steel: -,R,A,U,K,M,S,W,V 4. carbon: continuous 5. hardness: continuous 6. temper_rolling: -,T 7. condition: -,S,A,X 8. formability: -,1,2,3,4,5 9. strength: continuous 10. non-ageing: -,N 11. surface-finish: P,M,- 12. surface-quality: -,D,E,F,G 13. enamelability: -,1,2,3,4,5 14. bc: Y,- 15. bf: Y,- 16. bt: Y,- 17. bw/me: B,M,- 18. bl: Y,- 19. m: Y,- 20. chrom: C,- 21. phos: P,- 22. cbond: Y,- 23. marvi: Y,- 24. exptl: Y,- 25. ferro: Y,- 26. corr: Y,- 27. blue/bright/varn/clean: B,R,V,C,- 28. lustre: Y,- 29. jurofm: Y,- 30. s: Y,- 31. p: Y,- 32. shape: COIL, SHEET 33. thick: continuous 34. width: continuous 35. len: continuous 36. oil: -,Y,N 37. bore: 0000,0500,0600,0760 38. packing: -,1,2,3 classes: 1,2,3,4,5,U -- The '-' values are actually 'not_applicable' values rather than 'missing_values' (and so can be treated as legal discrete values rather than as showing the absence of a discrete value). 8. Missing Attribute Values: Signified with "?" Attribute: Number of instances missing its value: 1 0 2 0 3 70 4 0 5 0 6 675 7 271 8 283 9 0 10 703 11 790 12 217 13 785 14 797 15 680 16 736 17 609 18 662 19 798 20 775 21 791 22 730 23 798 24 796 25 772 26 798 27 793 28 753 29 798 30 798 31 798 32 0 33 0 34 0 35 0 36 740 37 0 38 789 39 0 9. Distribution of Classes Class Name: Number of Instances: 1 8 2 88 3 608 4 0 5 60 U 34 --- 798

39 features

class (target)nominal5 unique values
0 missing
familynominal2 unique values
772 missing
product-typenominal1 unique values
0 missing
steelnominal7 unique values
86 missing
carbonnumeric10 unique values
0 missing
hardnessnumeric7 unique values
0 missing
temper_rollingnominal1 unique values
761 missing
conditionnominal2 unique values
303 missing
formabilitynominal4 unique values
318 missing
strengthnumeric8 unique values
0 missing
non-ageingnominal1 unique values
793 missing
surface-finishnominal1 unique values
889 missing
surface-qualitynominal4 unique values
244 missing
enamelabilitynominal2 unique values
882 missing
bcnominal1 unique values
897 missing
bfnominal1 unique values
769 missing
btnominal1 unique values
824 missing
bw%2Fmenominal2 unique values
687 missing
blnominal1 unique values
749 missing
mnominal0 unique values
898 missing
chromnominal1 unique values
872 missing
phosnominal1 unique values
891 missing
cbondnominal1 unique values
824 missing
marvinominal0 unique values
898 missing
exptlnominal1 unique values
896 missing
ferronominal1 unique values
868 missing
corrnominal0 unique values
898 missing
blue%2Fbright%2Fvarn%2Fcleannominal3 unique values
892 missing
lustrenominal1 unique values
847 missing
jurofmnominal0 unique values
898 missing
snominal0 unique values
898 missing
pnominal0 unique values
898 missing
shapenominal2 unique values
0 missing
thicknumeric50 unique values
0 missing
widthnumeric68 unique values
0 missing
lennumeric24 unique values
0 missing
oilnominal2 unique values
834 missing
borenominal3 unique values
0 missing
packingnominal2 unique values
889 missing

107 properties

898
Number of instances (rows) of the dataset.
39
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
22175
Number of missing values in the dataset.
898
Number of instances with at least one value missing.
6
Number of numeric attributes.
33
Number of nominal attributes.
0.61
Average class difference between consecutive instances.
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.76
Maximum skewness among attributes of the numeric type.
0.87
Minimum standard deviation of attributes of the numeric type.
63.32
Percentage of missing values.
12.74
Third quartile of kurtosis among attributes of the numeric type.
901.26
Third quartile of means among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1871.4
Maximum standard deviation of attributes of the numeric type.
0.89
Percentage of instances belonging to the least frequent class.
15.38
Percentage of numeric attributes.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.25
Average entropy of the attributes.
8
Number of instances belonging to the least frequent class.
84.62
Percentage of nominal attributes.
3.75
Third quartile of skewness among attributes of the numeric type.
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
4.65
Mean kurtosis among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
First quartile of entropy among attributes.
771.86
Third quartile of standard deviation of attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
348.5
Mean of means among attributes of the numeric type.
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.4
First quartile of kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.04
Average mutual information between the nominal attributes and the target attribute.
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.03
First quartile of means among attributes of the numeric type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.67
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.56
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.64
Average number of distinct values among the attributes of the nominal type.
0.97
First quartile of skewness among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.03
Mean skewness among attributes of the numeric type.
10.51
First quartile of standard deviation of attributes of the numeric type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
76.17
Percentage of instances belonging to the most frequent class.
405.17
Mean standard deviation of attributes of the numeric type.
0
Second quartile (Median) of entropy among attributes.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1.19
Entropy of the target attribute values.
0.83
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
684
Number of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
1.64
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
1.82
Maximum entropy among attributes.
-0.97
Minimum kurtosis among attributes of the numeric type.
21.22
Second quartile (Median) of means among attributes of the numeric type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.23
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
13.22
Maximum kurtosis among attributes of the numeric type.
1.2
Minimum of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.45
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
1263.09
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
1.65
Second quartile (Median) of skewness among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Number of attributes divided by the number of instances.
0.41
Maximum mutual information between the nominal attributes and the target attribute.
0
The minimal number of distinct values among attributes of the nominal type.
10.26
Percentage of binary attributes.
69.85
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
26.84
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
7
The maximum number of distinct values among attributes of the nominal type.
0.07
Minimum skewness among attributes of the numeric type.
100
Percentage of instances having missing values.
0.24
Third quartile of entropy among attributes.

11 tasks

19 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
7 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task