Data
Australian

Australian

active ARFF Publicly available Visibility: public Uploaded 21-09-2016 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3050 study_3197 study_3962 study_5355 study_5865 study_11548 study_12484 study_15200 study_15201 study_5 study_935 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3412 study_4857 study_10096 study_10634 study_10849 study_15200 study_15201 study_16399 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_5162 study_6620 study_9147 study_13847 study_15200 study_15201 study_16172 study_205 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3818 study_4197 study_5628 study_5912 study_6660 study_10342 study_11132 study_11548 study_15200 study_15201 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3197 study_3777 study_15200 study_15201 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3413 study_4733 study_4734 study_7996 study_8255 study_8675 study_10232 study_10634 study_10844 study_13227 study_15200 study_15201 study_16032 study_114 study_5162 study_6532 study_9056 study_9532 study_11722 study_849 study_3413 study_5018 study_5628 study_10246 study_16222 study_16367 study_16656 study_3541 study_5912 study_6414 study_8580 study_9532 study_11785 study_14112 study_3195 study_4692 study_5 study_1684 study_2601 study_5677 study_7022 study_7626 study_10608 study_13539 study_15205
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Confidential. Donated by Ross Quinlan Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval))/LibSVM - 2014-11-14 Please cite: This is the famous Australian dataset, retrieved 2014-11-14 from the libSVM site. It was normalized. The original version is from [UCI](https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)). This file concerns credit card applications. All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data. This dataset is interesting because there is a good mix of attributes -- continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values. Source: Statlog / Australian # of classes: 2 # of data: 690 # of features: 14

15 features

Y (target)nominal2 unique values
0 missing
X1numeric2 unique values
0 missing
X2numeric350 unique values
0 missing
X3numeric215 unique values
0 missing
X4numeric3 unique values
0 missing
X5numeric14 unique values
0 missing
X6numeric8 unique values
0 missing
X7numeric132 unique values
0 missing
X8numeric2 unique values
0 missing
X9numeric2 unique values
0 missing
X10numeric23 unique values
0 missing
X11numeric2 unique values
0 missing
X12numeric3 unique values
0 missing
X13numeric171 unique values
0 missing
X14numeric240 unique values
0 missing

107 properties

690
Number of instances (rows) of the dataset.
15
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
14
Number of numeric attributes.
1
Number of nominal attributes.
Minimal mutual information between the nominal attributes and the target attribute.
0.38
Second quartile (Median) of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.36
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
6.67
Percentage of binary attributes.
0.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
-1.94
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
0.1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
13.38
Third quartile of kurtosis among attributes of the numeric type.
0.52
Average class difference between consecutive instances.
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
13.14
Maximum skewness among attributes of the numeric type.
44.49
Percentage of instances belonging to the least frequent class.
93.33
Percentage of numeric attributes.
-0.06
Third quartile of means among attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1
Maximum standard deviation of attributes of the numeric type.
307
Number of instances belonging to the least frequent class.
6.67
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
2.79
Third quartile of skewness among attributes of the numeric type.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
21.3
Mean kurtosis among attributes of the numeric type.
0.28
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.54
First quartile of kurtosis among attributes of the numeric type.
0.95
Third quartile of standard deviation of attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.35
Mean of means among attributes of the numeric type.
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.82
First quartile of means among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
-0.26
First quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
1.68
Mean skewness among attributes of the numeric type.
0.22
First quartile of standard deviation of attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.51
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
55.51
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
383
Number of instances belonging to the most frequent class.
-2
Minimum kurtosis among attributes of the numeric type.
-0.19
Second quartile (Median) of means among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.98
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
214.67
Maximum kurtosis among attributes of the numeric type.

11 tasks

1 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Y
0 runs - estimation_procedure: Test on Training Data - target_feature: Y
0 runs - estimation_procedure: Leave one out - target_feature: Y
0 runs - estimation_procedure: 10% Holdout set - target_feature: Y
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Y
0 runs - estimation_procedure: 33% Holdout set - target_feature: Y
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Y
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Y
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Y
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Y
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Y
Define a new task