Data
detroit

detroit

active ARFF Publicly available Visibility: public Uploaded 23-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_504 study_1893 study_6535 study_7452 study_11381 study_13711 study_16738 study_16844 study_17588 study_18256 study_20274 study_862 study_1823 study_2102 study_3686 study_4222 study_4562 study_4671 study_5093 study_6454 study_6901 study_13152 study_15920 study_17384 study_360 study_666 study_4870 study_7118 study_7490 study_10175 study_1715 study_3218 study_4613 study_6835 study_14237 study_16844 study_17509 study_4910 study_6668 study_12978 study_15849 study_20716 study_10848 study_13398 study_15084 study_15119 study_340 study_842 study_1163 study_3367 study_3582 study_3838 study_12466 study_14143 study_14260
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: Data from StatLib (ftp stat.cmu.edu/datasets) This is the data set called `DETROIT' in the book `Subset selection in regression' by Alan J. Miller published in the Chapman & Hall series of monographs on Statistics & Applied Probability, no. 40. The data are unusual in that a subset of three predictors can be found which gives a very much better fit to the data than the subsets found from the Efroymson stepwise algorithm, or from forward selection or backward elimination. The original data were given in appendix A of `Regression analysis and its application: A data-oriented approach' by Gunst & Mason, Statistics textbooks and monographs no. 24, Marcel Dekker. It has caused problems because some copies of the Gunst & Mason book do not contain all of the data, and because Miller does not say which variables he used as predictors and which is the dependent variable. (HOM was the dependent variable, and the predictors were FTP ... WE) The data were collected by J.C. Fisher and used in his paper: "Homicide in Detroit: The Role of Firearms", Criminology, vol.14, 387-400 (1976) The data are on the homicide rate in Detroit for the years 1961-1973. FTP - Full-time police per 100,000 population UEMP - % unemployed in the population MAN - number of manufacturing workers in thousands LIC - Number of handgun licences per 100,000 population GR - Number of handgun registrations per 100,000 population CLEAR - % homicides cleared by arrests WM - Number of white males in the population NMAN - Number of non-manufacturing workers in thousands GOV - Number of government workers in thousands HE - Average hourly earnings WE - Average weekly earnings HOM - Number of homicides per 100,000 of population ACC - Death rate in accidents per 100,000 population ASR - Number of assaults per 100,000 population N.B. Each case takes two lines.

14 features

ASR (target)numeric13 unique values
0 missing
FTPnumeric13 unique values
0 missing
UEMPnumeric13 unique values
0 missing
MANnumeric13 unique values
0 missing
LICnumeric13 unique values
0 missing
GRnumeric13 unique values
0 missing
CLEARnumeric13 unique values
0 missing
WMnumeric13 unique values
0 missing
NMANnumeric13 unique values
0 missing
GOVnumeric13 unique values
0 missing
HEnumeric13 unique values
0 missing
WEnumeric13 unique values
0 missing
HOMnumeric13 unique values
0 missing
ACCnumeric13 unique values
0 missing

107 properties

13
Number of instances (rows) of the dataset.
14
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
14
Number of numeric attributes.
0
Number of nominal attributes.
0.28
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
452507.54
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
44.66
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
1.08
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-0.87
Minimum skewness among attributes of the numeric type.
0
Percentage of missing values.
-0.05
Third quartile of kurtosis among attributes of the numeric type.
-29.1
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.03
Maximum skewness among attributes of the numeric type.
0.97
Minimum standard deviation of attributes of the numeric type.
100
Percentage of numeric attributes.
548.35
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
64568.12
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
0.83
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.74
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.34
First quartile of kurtosis among attributes of the numeric type.
148.83
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
32568.32
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
41.46
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
-0.09
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
10.78
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.27
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
4684.08
Mean standard deviation of attributes of the numeric type.
-1
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
245.14
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.64
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.83
Maximum kurtosis among attributes of the numeric type.
3.95
Minimum of means among attributes of the numeric type.

7 tasks

0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: ASR
0 runs - estimation_procedure: Test on Training Data - target_feature: ASR
0 runs - estimation_procedure: 33% Holdout set - target_feature: ASR
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: ASR
0 runs - estimation_procedure: Leave one out - target_feature: ASR
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: ASR
0 runs - estimation_procedure: 10% Holdout set - target_feature: ASR
Define a new task