Data
mushroom

mushroom

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_668 study_1738 study_3920 study_6416 study_153 study_862 study_1256 study_3297 study_13398 study_2436 study_12195 study_340 study_1011 study_3115 study_4542 study_7118 study_11381 study_3097 study_6515 study_6884 study_11266 study_12215 study_638 study_688 study_2102 study_5141 study_7020 study_7602 study_11336 study_947 study_1163 study_2599 study_10175 study_12142 study_12250 study_12660 study_7223 study_2771 study_4655 study_5972 study_10654 study_12466 study_4677 study_5035 study_6786 study_341 study_1213 study_1443 study_1999 study_2060 study_2640 study_2795 study_2982 study_3118 study_3859 study_4734 study_6397 study_7102
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: 1. Title: Mushroom Database 2. Sources: (a) Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf (b) Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) (c) Date: 27 April 1987 3. Past Usage: 1. Schlimmer,J.S. (1987). Concept Acquisition Through Representational Adjustment (Technical Report 87-19). Doctoral disseration, Department of Information and Computer Science, University of California, Irvine. --- STAGGER: asymptoted to 95% classification accuracy after reviewing 1000 instances. 2. Iba,W., Wogulis,J., & Langley,P. (1988). Trading off Simplicity and Coverage in Incremental Concept Learning. In Proceedings of the 5th International Conference on Machine Learning, 73-79. Ann Arbor, Michigan: Morgan Kaufmann. -- approximately the same results with their HILLARY algorithm 3. In the following references a set of rules (given below) were learned for this data set which may serve as a point of comparison for other researchers. Duch W, Adamczak R, Grabczewski K (1996) Extraction of logical rules from training data using backpropagation networks, in: Proc. of the The 1st Online Workshop on Soft Computing, 19-30.Aug.1996, pp. 25-30, available on-line at: http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/ Duch W, Adamczak R, Grabczewski K, Ishikawa M, Ueda H, Extraction of crisp logical rules using constrained backpropagation networks - comparison of two new approaches, in: Proc. of the European Symposium on Artificial Neural Networks (ESANN'97), Bruge, Belgium 16-18.4.1997, pp. xx-xx Wlodzislaw Duch, Department of Computer Methods, Nicholas Copernicus University, 87-100 Torun, Grudziadzka 5, Poland e-mail: duch@phys.uni.torun.pl WWW http://www.phys.uni.torun.pl/kmk/ Date: Mon, 17 Feb 1997 13:47:40 +0100 From: Wlodzislaw Duch Organization: Dept. of Computer Methods, UMK I have attached a file containing logical rules for mushrooms. It should be helpful for other people since only in the last year I have seen about 10 papers analyzing this dataset and obtaining quite complex rules. We will try to contribute other results later. With best regards, Wlodek Duch ________________________________________________________________ Logical rules for the mushroom data sets. Logical rules given below seem to be the simplest possible for the mushroom dataset and therefore should be treated as benchmark results. Disjunctive rules for poisonous mushrooms, from most general to most specific: P_1) odor=NOT(almond.OR.anise.OR.none) 120 poisonous cases missed, 98.52% accuracy P_2) spore-print-color=green 48 cases missed, 99.41% accuracy P_3) odor=none.AND.stalk-surface-below-ring=scaly.AND. (stalk-color-above-ring=NOT.brown) 8 cases missed, 99.90% accuracy P_4) habitat=leaves.AND.cap-color=white 100% accuracy Rule P_4) may also be P_4') population=clustered.AND.cap_color=white These rule involve 6 attributes (out of 22). Rules for edible mushrooms are obtained as negation of the rules given above, for example the rule: odor=(almond.OR.anise.OR.none).AND.spore-print-color=NOT.green gives 48 errors, or 99.41% accuracy on the whole dataset. Several slightly more complex variations on these rules exist, involving other attributes, such as gill_size, gill_spacing, stalk_surface_above_ring, but the rules given above are the simplest we have found. 4. Relevant Information: This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like ``leaflets three, let it be'' for Poisonous Oak and Ivy. 5. Number of Instances: 8124 6. Number of Attributes: 22 (all nominally valued) 7. Attribute Information: (classes: edible=e, poisonous=p) 1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s 3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y 4. bruises?: bruises=t,no=f 5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s 6. gill-attachment: attached=a,descending=d,free=f,notched=n 7. gill-spacing: close=c,crowded=w,distant=d 8. gill-size: broad=b,narrow=n 9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y 10. stalk-shape: enlarging=e,tapering=t 11. stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=? 12. stalk-surface-above-ring: ibrous=f,scaly=y,silky=k,smooth=s 13. stalk-surface-below-ring: ibrous=f,scaly=y,silky=k,smooth=s 14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y 15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y 16. veil-type: partial=p,universal=u 17. veil-color: brown=n,orange=o,white=w,yellow=y 18. ring-number: none=n,one=o,two=t 19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z 20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y 21. population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y 22. habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d 8. Missing Attribute Values: 2480 of them (denoted by "?"), all for attribute #11. 9. Class Distribution: -- edible: 4208 (51.8%) -- poisonous: 3916 (48.2%) -- total: 8124 instances

23 features

class (target)nominal2 unique values
0 missing
cap-shapenominal6 unique values
0 missing
cap-surfacenominal4 unique values
0 missing
cap-colornominal10 unique values
0 missing
bruises%3Fnominal2 unique values
0 missing
odornominal9 unique values
0 missing
gill-attachmentnominal2 unique values
0 missing
gill-spacingnominal2 unique values
0 missing
gill-sizenominal2 unique values
0 missing
gill-colornominal12 unique values
0 missing
stalk-shapenominal2 unique values
0 missing
stalk-rootnominal4 unique values
2480 missing
stalk-surface-above-ringnominal4 unique values
0 missing
stalk-surface-below-ringnominal4 unique values
0 missing
stalk-color-above-ringnominal9 unique values
0 missing
stalk-color-below-ringnominal9 unique values
0 missing
veil-typenominal1 unique values
0 missing
veil-colornominal4 unique values
0 missing
ring-numbernominal3 unique values
0 missing
ring-typenominal5 unique values
0 missing
spore-print-colornominal9 unique values
0 missing
populationnominal6 unique values
0 missing
habitatnominal7 unique values
0 missing

107 properties

8124
Number of instances (rows) of the dataset.
23
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
2480
Number of missing values in the dataset.
2480
Number of instances with at least one value missing.
0
Number of numeric attributes.
23
Number of nominal attributes.
Third quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.05
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.01
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.2
Average mutual information between the nominal attributes and the target attribute.
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
6.11
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5
Number of binary attributes.
0.03
First quartile of mutual information between the nominal attributes and the target attribute.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.18
Standard deviation of the number of distinct values among attributes of the nominal type.
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
5.13
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.01
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
51.8
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
1.47
Second quartile (Median) of entropy among attributes.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1
Entropy of the target attribute values.
1
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
4208
Number of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.03
Maximum entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.11
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0.17
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of standard deviation of attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.91
Maximum mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
21.74
Percentage of binary attributes.
2.05
Third quartile of entropy among attributes.
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
5.04
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
12
The maximum number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
30.53
Percentage of instances having missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.73
Average class difference between consecutive instances.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
1.33
Percentage of missing values.
Third quartile of means among attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
48.2
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
0.28
Third quartile of mutual information between the nominal attributes and the target attribute.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.41
Average entropy of the attributes.
3916
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
Third quartile of skewness among attributes of the numeric type.
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.83
First quartile of entropy among attributes.

12 tasks

13 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: ring-type
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task