Data
credit-a

credit-a

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1259 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3294 study_4194 study_4732 study_5114 study_5441 study_7949 study_11270 study_11816 study_14013 study_849 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3684 study_3996 study_10242 study_10744 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3305 study_3542 study_5534 study_6669 study_13359 study_206 study_2022 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_5960 study_6186 study_6664 study_10344 study_12484 study_205 study_647 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_7400 study_10254 study_10441 study_11364 study_1837 study_2491 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_7396 study_10090 study_2218 study_5018 study_8157 study_10850 study_11785 study_13361 study_206 study_752 study_4734 study_5165 study_7626 study_8579 study_9147 study_10521 study_11627 study_10096 study_1355 study_1932 study_6623 study_10849 study_13361 study_1598 study_5694 study_9903 study_11147 study_13361
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

16 features

class (target)nominal2 unique values
0 missing
A1nominal2 unique values
12 missing
A2numeric349 unique values
12 missing
A3numeric215 unique values
0 missing
A4nominal3 unique values
6 missing
A5nominal3 unique values
6 missing
A6nominal14 unique values
9 missing
A7nominal9 unique values
9 missing
A8numeric132 unique values
0 missing
A9nominal2 unique values
0 missing
A10nominal2 unique values
0 missing
A11numeric23 unique values
0 missing
A12nominal2 unique values
0 missing
A13nominal3 unique values
0 missing
A14numeric170 unique values
13 missing
A15numeric240 unique values
0 missing

107 properties

690
Number of instances (rows) of the dataset.
16
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
67
Number of missing values in the dataset.
37
Number of instances with at least one value missing.
6
Number of numeric attributes.
10
Number of nominal attributes.
55.51
Percentage of instances belonging to the most frequent class.
901.51
Mean standard deviation of attributes of the numeric type.
0.98
Second quartile (Median) of entropy among attributes.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
383
Number of instances belonging to the most frequent class.
0.5
Minimal entropy among attributes.
15.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
3.5
Maximum entropy among attributes.
1.12
Minimum kurtosis among attributes of the numeric type.
18.16
Second quartile (Median) of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
214.67
Maximum kurtosis among attributes of the numeric type.
2.22
Minimum of means among attributes of the numeric type.
0.03
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
1017.39
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2.81
Second quartile (Median) of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.43
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
31.25
Percentage of binary attributes.
8.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Number of attributes divided by the number of instances.
14
The maximum number of distinct values among attributes of the nominal type.
1.15
Minimum skewness among attributes of the numeric type.
5.36
Percentage of instances having missing values.
1.39
Third quartile of entropy among attributes.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
10.99
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
13.14
Maximum skewness among attributes of the numeric type.
3.35
Minimum standard deviation of attributes of the numeric type.
0.61
Percentage of missing values.
91.79
Third quartile of kurtosis among attributes of the numeric type.
0.98
Average class difference between consecutive instances.
0.49
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
5210.1
Maximum standard deviation of attributes of the numeric type.
44.49
Percentage of instances belonging to the least frequent class.
37.5
Percentage of numeric attributes.
392.36
Third quartile of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.25
Average entropy of the attributes.
307
Number of instances belonging to the least frequent class.
62.5
Percentage of nominal attributes.
0.13
Third quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
49.93
Mean kurtosis among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.82
First quartile of entropy among attributes.
7.15
Third quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.49
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
207.06
Mean of means among attributes of the numeric type.
0.22
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.99
First quartile of kurtosis among attributes of the numeric type.
1432.88
Third quartile of standard deviation of attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.09
Average mutual information between the nominal attributes and the target attribute.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.36
First quartile of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.14
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
12.9
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.49
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.2
Average number of distinct values among the attributes of the nominal type.
1.4
First quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
4.05
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.42
Mean skewness among attributes of the numeric type.
4.48
First quartile of standard deviation of attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

1321 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task