Data
credit-a

credit-a

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1276 study_4890 study_7040 study_7081 study_8366 study_10111 study_3013 study_3198 study_3811 study_4714 study_4812 study_8366 study_308 study_658 study_2144 study_3156 study_4376 study_6019 study_7040 study_7381 study_7398 study_8366 study_12392 study_3029 study_6474 study_7277 study_8366 study_10965 study_463 study_1715 study_2907 study_3051 study_7152 study_8366 study_11825 study_6323 study_8366 study_10930 study_3029 study_3686 study_3940 study_202 study_2018 study_11168 study_11408 study_4653 study_7152 study_7381 study_12215 study_237 study_4146 study_7602 study_504 study_638 study_2751 study_3547 study_3686 study_4222 study_5972 study_10930 study_11587 study_968 study_4543 study_4672 study_11607 study_35
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: 1. Title: Credit Approval 2. Sources: (confidential) Submitted by quinlan@cs.su.oz.au 3. Past Usage: See Quinlan, * "Simplifying decision trees", Int J Man-Machine Studies 27, Dec 1987, pp. 221-234. * "C4.5: Programs for Machine Learning", Morgan Kaufmann, Oct 1992 4. Relevant Information: This file concerns credit card applications. All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data. This dataset is interesting because there is a good mix of attributes -- continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values. 5. Number of Instances: 690 6. Number of Attributes: 15 + class attribute 7. Attribute Information: A1: b, a. A2: continuous. A3: continuous. A4: u, y, l, t. A5: g, p, gg. A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff. A7: v, h, bb, j, n, z, dd, ff, o. A8: continuous. A9: t, f. A10: t, f. A11: continuous. A12: t, f. A13: g, p, s. A14: continuous. A15: continuous. A16: +,- (class attribute) 8. Missing Attribute Values: 37 cases (5%) have one or more missing values. The missing values from particular attributes are: A1: 12 A2: 12 A4: 6 A5: 6 A6: 9 A7: 9 A14: 13 9. Class Distribution +: 307 (44.5%) -: 383 (55.5%)

16 features

class (target)nominal2 unique values
0 missing
A1nominal2 unique values
12 missing
A2numeric349 unique values
12 missing
A3numeric215 unique values
0 missing
A4nominal3 unique values
6 missing
A5nominal3 unique values
6 missing
A6nominal14 unique values
9 missing
A7nominal9 unique values
9 missing
A8numeric132 unique values
0 missing
A9nominal2 unique values
0 missing
A10nominal2 unique values
0 missing
A11numeric23 unique values
0 missing
A12nominal2 unique values
0 missing
A13nominal3 unique values
0 missing
A14numeric170 unique values
13 missing
A15numeric240 unique values
0 missing

107 properties

690
Number of instances (rows) of the dataset.
16
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
67
Number of missing values in the dataset.
37
Number of instances with at least one value missing.
6
Number of numeric attributes.
10
Number of nominal attributes.
0.09
Average mutual information between the nominal attributes and the target attribute.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.36
First quartile of means among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.21
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.22
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
12.9
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.2
Average number of distinct values among the attributes of the nominal type.
1.4
First quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
4.05
Standard deviation of the number of distinct values among attributes of the nominal type.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.42
Mean skewness among attributes of the numeric type.
4.48
First quartile of standard deviation of attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.19
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
901.51
Mean standard deviation of attributes of the numeric type.
0.98
Second quartile (Median) of entropy among attributes.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
55.51
Percentage of instances belonging to the most frequent class.
0.5
Minimal entropy among attributes.
15.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
383
Number of instances belonging to the most frequent class.
1.12
Minimum kurtosis among attributes of the numeric type.
18.16
Second quartile (Median) of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.5
Maximum entropy among attributes.
2.22
Minimum of means among attributes of the numeric type.
0.03
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
214.67
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2.81
Second quartile (Median) of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
1017.39
Maximum of means among attributes of the numeric type.
0.43
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
31.25
Percentage of binary attributes.
8.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Number of attributes divided by the number of instances.
14
The maximum number of distinct values among attributes of the nominal type.
1.15
Minimum skewness among attributes of the numeric type.
5.36
Percentage of instances having missing values.
1.39
Third quartile of entropy among attributes.
0.36
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
10.99
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
13.14
Maximum skewness among attributes of the numeric type.
3.35
Minimum standard deviation of attributes of the numeric type.
0.61
Percentage of missing values.
91.79
Third quartile of kurtosis among attributes of the numeric type.
0.98
Average class difference between consecutive instances.
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
5210.1
Maximum standard deviation of attributes of the numeric type.
44.49
Percentage of instances belonging to the least frequent class.
37.5
Percentage of numeric attributes.
392.36
Third quartile of means among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.25
Average entropy of the attributes.
307
Number of instances belonging to the least frequent class.
62.5
Percentage of nominal attributes.
0.13
Third quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.26
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
49.93
Mean kurtosis among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.82
First quartile of entropy among attributes.
7.15
Third quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.46
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
207.06
Mean of means among attributes of the numeric type.
0.22
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.99
First quartile of kurtosis among attributes of the numeric type.
1432.88
Third quartile of standard deviation of attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001

11 tasks

37 runs - estimation_procedure: 33% Holdout set - target_feature: class
4 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task