Data
diabetes

diabetes

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_5677 study_3287 study_3571 study_4736 study_5528 study_5135 study_2709 study_3286 study_3736 study_3496 study_2347 study_3700 study_4563 study_4787 study_5293 study_3638 study_2347 study_3287 study_259 study_646 study_676 study_754 study_938 study_955 study_983 study_994 study_1004 study_1007 study_1012 study_1017 study_1058 study_1068 study_1070 study_1081 study_1095 study_1108 study_1125 study_1140 study_1168 study_1176 study_1201 study_1206 study_1224 study_1234 study_1239 study_1249 study_1250 study_1254 study_1265 study_1280 study_1290 study_1297 study_1311 study_1312 study_1325 study_1344 study_1354 study_1357 study_1367 study_1402 study_1418 study_1420 study_1423 study_1425 study_1433 study_1439 study_1447 study_1453 study_1454 study_1460 study_1467 study_1475 study_1503 study_1512 study_1513 study_1515 study_1522 study_1523 study_1533 study_1534 study_1549 study_1565 study_1574 study_1584 study_1597 study_1617 study_1631 study_1638 study_1644 study_1655 study_1658 study_1659 study_1664 study_1691 study_1738 study_1765 study_1771 study_1773 study_1786 study_1793 study_1794 study_1798 study_1800 study_1810 study_1831 study_1836 study_1841 study_1850 study_1851 study_1856 study_1867 study_1876 study_1882 study_1893 study_1894 study_1903 study_1908 study_1940 study_1945 study_1948 study_1991 study_2031 study_2580 study_2599 study_2604 study_2640 study_2646 study_2649 study_2654 study_2656 study_2671 study_2675 study_2684 study_2688 study_2693 study_2696 study_2698 study_2703 study_2710 study_2714 study_2724 study_2734 study_2735 study_2746 study_2756 study_2759 study_2770 study_2772 study_2777 study_2786 study_2798 study_2799 study_2810 study_2817 study_2820 study_2829 study_2830 study_2834 study_2841 study_2846 study_2851 study_2859 study_2861 study_2865 study_2871 study_2875 study_2882 study_2887 study_2893 study_2901 study_2906 study_2911 study_2919 study_2920 study_2930 study_2943 study_2944 study_2945 study_2946 study_2949 study_2968 study_2971 study_2975 study_2977 study_2996 study_2997 study_2998 study_3002 study_3003 study_3009 study_3014 study_3023 study_3030 study_3031 study_3032 study_3037 study_3049 study_3050 study_3055 study_3058 study_3067 study_3075 study_3089 study_3103 study_3104 study_3114 study_3125 study_3149 study_3253 study_3507 study_3512 study_3518 study_3530 study_3537 study_3543 study_3548 study_3556 study_3561 study_3565 study_3575 study_3580 study_3581 study_3586 study_3601 study_3602 study_3607 study_3612 study_3624 study_3630 study_3632 study_3637 study_3641 study_3647 study_3650 study_3651 study_3652 study_3664 study_3674 study_3679 study_3692 study_3698 study_3703 study_3714 study_3717 study_3722 study_3749 study_3755 study_3761 study_3764 study_3769 study_3774 study_3781 study_3791 study_3797 study_3806 study_3816 study_3821 study_3826 study_3833 study_3837 study_3839 study_3844 study_3849 study_3854 study_3864 study_3869 study_3899 study_3913 study_3924 study_4059 study_4203 study_4247 study_4426 study_5585 study_5690 study_5700 study_5711 study_5712 study_5718 study_5733 study_5738 study_5758 study_5760 study_5772 study_5773 study_5774 study_5810 study_5826 study_5839 study_5858 study_5871 study_5874 study_5886 study_5897 study_5898 study_5899 study_5900 study_5901 study_5902 study_2303 study_2315 study_2317 study_2334 study_2336 study_2345 study_2346 study_2348 study_2352 study_2360 study_2363 study_2406 study_2413 study_2435 study_2437 study_2454 study_2497 study_2498 study_2570 study_2632 study_2648 study_2727 study_2742 study_2760 study_2761 study_2778 study_2781 study_2787 study_2814 study_2821 study_3016 study_3039 study_3064 study_3224 study_3235 study_3238 study_3285 study_3288 study_3289 study_3351 study_3354 study_3355 study_3497 study_3568 study_3569 study_3587 study_3667 study_3693 study_3694 study_3699 study_3701 study_3704 study_3729 study_3737 study_3738 study_3743 study_3782 study_3786 study_3977 study_3999 study_4002 study_4006 study_4351 study_4352 study_4414 study_4427 study_4428 study_4431 study_4432 study_4491 study_4516 study_4560 study_4561 study_4562 study_4565 study_4566 study_4638 study_4640 study_4642 study_4649 study_4651 study_4653 study_4660 study_4663 study_4664 study_4691 study_4699 study_4700 study_4737 study_4739 study_4741 study_4748 study_4765 study_4767 study_4769 study_4776 study_4793 study_4795 study_4807 study_4819 study_4831 study_4833 study_4855 study_4857 study_4869 study_4886 study_4898 study_4935 study_4937 study_4959 study_4971 study_5003 study_5035 study_5067 study_5089 study_5132 study_5133 study_5136 study_5137 study_5179 study_5181 study_5243 study_5246 study_5247 study_5294 study_5306 study_5318 study_5330 study_5332 study_5354 study_5356 study_5529 study_5550 study_5552 study_5555 study_5556 study_5559 study_5560 study_5562 study_5564 study_5666 study_5679 study_5680
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
## Meta-Album Textures-DTD Dataset (Micr) * The Textures DTD dataset(https://www.rbts.x.ac.uk/~vgg/data/dtd/index.html) is a large textures dataset which cnsists f 5 640 images. The data is cllected frm Ggle and Flicker by the riginal authrs f the paper "Describing Textures in the Wild". The data was anntated using Amazn Mechanical Turk. The data cllectin prcess is mentined n the dataset verview page. Fr Meta-Album meta-dataset, this dataset is preprcessed by crpping the images t square images and then resizing them t 128x128 using Open-CV with an anti-aliasing filter. This dataset has 47 class labels. ### Dataset Details ![](https://meta-album.github.i/assets/img/samples/TEX_DTD.png) Meta Album ID: MNF.TEX_DTD Meta Album URL: [https://meta-album.github.i/datasets/TEX_DTD.html](https://meta-album.github.i/datasets/TEX_DTD.html) Dmain ID: MNF Dmain Name: Manufacturing Dataset ID: TEX_DTD Dataset Name: Textures-DTD Shrt Descriptin: Textures dataset frm Describable Textures Dataset \# Classes: 20 \# Images: 800 Keywrds: textures, manufacturing Data Frmat: images Image size: 128x128 License (riginal data release): Open fr research purpses License (Meta-Album data release): CC BY-NC 4.0 License URL (Meta-Album data release): [https://creativecmmns.rg/licenses/by-nc/4.0/](https://creativecmmns.rg/licenses/by-nc/4.0/) Surce: Describable Textures Dataset (DTD), University f Oxfrd, England Surce URL: https://www.rbts.x.ac.uk/~vgg/data/dtd/ Original Authr: Mircea Cimpi, Subhransu354Maji, Iasnas Kkkins, Sammy Mhamed, Andrea Vedaldi Original cntact: {mircea, vedaldi}@rbts.x.ac.uk Meta Album authr: Ihsan Ullah Created Date: 01 March 2022 Cntact Name: Ihsan Ullah Cntact Email: meta-album@chalearn.rg Cntact URL: [https://meta-album.github.i/](https://meta-album.github.i/) ### Cite this dataset ``` @InPrceedings{cimpi14describing, Authr = {M. Cimpi and S. Maji and I. Kkkins and S. Mhamed and and A. Vedaldi}, Title = {Describing Textures in the Wild}, Bktitle = {Prceedings f the {IEEE} Cnf. n Cmputer Visin and Pattern Recgnitin ({CVPR})}, Year = {2014} } ``` ### Cite Meta-Album ``` @inprceedings{meta-album-2022, title={Meta-Album: Multi-dmain Meta-Dataset fr Few-Sht Image Classificatin}, authr={Ullah, Ihsan and Carrin, Dustin and Escalera, Sergi and Guyn, Isabelle M and Huisman, Mike and Mhr, Felix and van Rijn, Jan N and Sun, Hazhe and Vanschren, Jaquin and Vu, Phan Anh}, bktitle={Thirty-sixth Cnference n Neural Infrmatin Prcessing Systems Datasets and Benchmarks Track}, url = {https://meta-album.github.i/}, year = {2022} } ``` ### Mre Fr mre infrmatin n the Meta-Album dataset, please see the [[NeurIPS 2022 paper]](https://meta-album.github.i/paper/Meta-Album.pdf) Fr details n the dataset preprcessing, please see the [[supplementary materials]](https://penreview.net/attachment?id=70_Wx-dON3q&name=supplementary_material) Supprting cde can be fund n ur [[GitHub rep]](https://github.cm/ihsaan-ullah/meta-album) Meta-Album n Papers with Cde [[Meta-Album]](https://paperswithcde.cm/dataset/meta-album) ### Other versins f this dataset [[Mini]](https://www.penml.rg/d/44294) [[Extended]](https://www.penml.rg/d/44328)

9 features

class (target)nominal2 unique values
0 missing
pregnumeric17 unique values
0 missing
plasnumeric136 unique values
0 missing
presnumeric47 unique values
0 missing
skinnumeric51 unique values
0 missing
insunumeric186 unique values
0 missing
massnumeric248 unique values
0 missing
pedinumeric517 unique values
0 missing
agenumeric52 unique values
0 missing

107 properties

768
Number of instances (rows) of the dataset.
9
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
8
Number of numeric attributes.
1
Number of nominal attributes.
0.55
Average class difference between consecutive instances.
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.27
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Entropy of the target attribute values.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.27
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.28
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.28
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.28
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
65.1
Percentage of instances belonging to the most frequent class.
500
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
7.21
Maximum kurtosis among attributes of the numeric type.
120.89
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
2.27
Maximum skewness among attributes of the numeric type.
115.24
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.78
Mean kurtosis among attributes of the numeric type.
44.99
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
0.53
Mean skewness among attributes of the numeric type.
25.73
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.52
Minimum kurtosis among attributes of the numeric type.
0.47
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-1.84
Minimum skewness among attributes of the numeric type.
0.33
Minimum standard deviation of attributes of the numeric type.
34.9
Percentage of instances belonging to the least frequent class.
268
Number of instances belonging to the least frequent class.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.24
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.46
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
11.11
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
88.89
Percentage of numeric attributes.
11.11
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.28
First quartile of kurtosis among attributes of the numeric type.
8.02
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.29
First quartile of skewness among attributes of the numeric type.
4.5
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.97
Second quartile (Median) of kurtosis among attributes of the numeric type.
32.62
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.54
Second quartile (Median) of skewness among attributes of the numeric type.
13.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.49
Third quartile of kurtosis among attributes of the numeric type.
77.13
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.72
Third quartile of skewness among attributes of the numeric type.
28.82
Third quartile of standard deviation of attributes of the numeric type.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.28
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.28
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.28
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.31
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

5052 runs - estimation_procedure: 10% Holdout set - target_feature: class
1522 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
858 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task