Data
spambase

spambase

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_105 study_2 study_66
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite: 1. Title: SPAM E-mail Database 2. Sources: (a) Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304 (b) Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835 (c) Generated: June-July 1999 3. Past Usage: (a) Hewlett-Packard Internal-only Technical Report. External forthcoming. (b) Determine whether a given email is spam or not. (c) ~7% misclassification error. False positives (marking good mail as spam) are very undesirable. If we insist on zero false positives in the training/testing set, 20-25% of the spam passed through the filter. 4. Relevant Information: The "spam" concept is diverse: advertisements for products/web sites, make money fast schemes, chain letters, pornography... Our collection of spam e-mails came from our postmaster and individuals who had filed spam. Our collection of non-spam e-mails came from filed work and personal e-mails, and hence the word 'george' and the area code '650' are indicators of non-spam. These are useful when constructing a personalized spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter. For background on spam: Cranor, Lorrie F., LaMacchia, Brian A. Spam! Communications of the ACM, 41(8):74-83, 1998. 5. Number of Instances: 4601 (1813 Spam = 39.4%) 6. Number of Attributes: 58 (57 continuous, 1 nominal class label) 7. Attribute Information: The last column of 'spambase.data' denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occuring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes: 48 continuous real [0,100] attributes of type word_freq_WORD = percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string. 6 continuous real [0,100] attributes of type char_freq_CHAR = percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail 1 continuous real [1,...] attribute of type capital_run_length_average = average length of uninterrupted sequences of capital letters 1 continuous integer [1,...] attribute of type capital_run_length_longest = length of longest uninterrupted sequence of capital letters 1 continuous integer [1,...] attribute of type capital_run_length_total = sum of length of uninterrupted sequences of capital letters = total number of capital letters in the e-mail 1 nominal {0,1} class attribute of type spam = denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. 8. Missing Attribute Values: None 9. Class Distribution: Spam 1813 (39.4%) Non-Spam 2788 (60.6%) Attribute Statistics: Min: Max: Average: Std.Dev: Coeff.Var_%: 1 0 4.54 0.10455 0.30536 292 2 0 14.28 0.21301 1.2906 606 3 0 5.1 0.28066 0.50414 180 4 0 42.81 0.065425 1.3952 2130 5 0 10 0.31222 0.67251 215 6 0 5.88 0.095901 0.27382 286 7 0 7.27 0.11421 0.39144 343 8 0 11.11 0.10529 0.40107 381 9 0 5.26 0.090067 0.27862 309 10 0 18.18 0.23941 0.64476 269 11 0 2.61 0.059824 0.20154 337 12 0 9.67 0.5417 0.8617 159 13 0 5.55 0.09393 0.30104 320 14 0 10 0.058626 0.33518 572 15 0 4.41 0.049205 0.25884 526 16 0 20 0.24885 0.82579 332 17 0 7.14 0.14259 0.44406 311 18 0 9.09 0.18474 0.53112 287 19 0 18.75 1.6621 1.7755 107 20 0 18.18 0.085577 0.50977 596 21 0 11.11 0.80976 1.2008 148 22 0 17.1 0.1212 1.0258 846 23 0 5.45 0.10165 0.35029 345 24 0 12.5 0.094269 0.44264 470 25 0 20.83 0.5495 1.6713 304 26 0 16.66 0.26538 0.88696 334 27 0 33.33 0.7673 3.3673 439 28 0 9.09 0.12484 0.53858 431 29 0 14.28 0.098915 0.59333 600 30 0 5.88 0.10285 0.45668 444 31 0 12.5 0.064753 0.40339 623 32 0 4.76 0.047048 0.32856 698 33 0 18.18 0.097229 0.55591 572 34 0 4.76 0.047835 0.32945 689 35 0 20 0.10541 0.53226 505 36 0 7.69 0.097477 0.40262 413 37 0 6.89 0.13695 0.42345 309 38 0 8.33 0.013201 0.22065 1670 39 0 11.11 0.078629 0.43467 553 40 0 4.76 0.064834 0.34992 540 41 0 7.14 0.043667 0.3612 827 42 0 14.28 0.13234 0.76682 579 43 0 3.57 0.046099 0.22381 486 44 0 20 0.079196 0.62198 785 45 0 21.42 0.30122 1.0117 336 46 0 22.05 0.17982 0.91112 507 47 0 2.17 0.0054445 0.076274 1400 48 0 10 0.031869 0.28573 897 49 0 4.385 0.038575 0.24347 631 50 0 9.752 0.13903 0.27036 194 51 0 4.081 0.016976 0.10939 644 52 0 32.478 0.26907 0.81567 303 53 0 6.003 0.075811 0.24588 324 54 0 19.829 0.044238 0.42934 971 55 1 1102.5 5.1915 31.729 611 56 1 9989 52.173 194.89 374 57 1 15841 283.29 606.35 214 58 0 1 0.39404 0.4887 124 This file: 'spambase.DOCUMENTATION' at the UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.html Information about the dataset CLASSTYPE: nominal CLASSINDEX: last

58 features

class (target)nominal2 unique values
0 missing
word_freq_telnetnumeric128 unique values
0 missing
word_freq_labsnumeric179 unique values
0 missing
word_freq_857numeric106 unique values
0 missing
word_freq_datanumeric184 unique values
0 missing
word_freq_415numeric110 unique values
0 missing
word_freq_85numeric177 unique values
0 missing
word_freq_technologynumeric159 unique values
0 missing
word_freq_1999numeric188 unique values
0 missing
word_freq_partsnumeric53 unique values
0 missing
word_freq_pmnumeric163 unique values
0 missing
word_freq_directnumeric125 unique values
0 missing
word_freq_csnumeric108 unique values
0 missing
word_freq_meetingnumeric186 unique values
0 missing
word_freq_originalnumeric136 unique values
0 missing
word_freq_projectnumeric160 unique values
0 missing
word_freq_renumeric230 unique values
0 missing
word_freq_edunumeric227 unique values
0 missing
word_freq_tablenumeric38 unique values
0 missing
word_freq_conferencenumeric106 unique values
0 missing
char_freq_%3Bnumeric313 unique values
0 missing
char_freq_%28numeric641 unique values
0 missing
char_freq_%5Bnumeric225 unique values
0 missing
char_freq_%21numeric964 unique values
0 missing
char_freq_%24numeric504 unique values
0 missing
char_freq_%23numeric316 unique values
0 missing
capital_run_length_averagenumeric2161 unique values
0 missing
capital_run_length_longestnumeric271 unique values
0 missing
capital_run_length_totalnumeric919 unique values
0 missing
word_freq_freenumeric253 unique values
0 missing
word_freq_addressnumeric171 unique values
0 missing
word_freq_allnumeric214 unique values
0 missing
word_freq_3dnumeric43 unique values
0 missing
word_freq_ournumeric255 unique values
0 missing
word_freq_overnumeric141 unique values
0 missing
word_freq_removenumeric173 unique values
0 missing
word_freq_internetnumeric170 unique values
0 missing
word_freq_ordernumeric144 unique values
0 missing
word_freq_mailnumeric245 unique values
0 missing
word_freq_receivenumeric113 unique values
0 missing
word_freq_willnumeric316 unique values
0 missing
word_freq_peoplenumeric158 unique values
0 missing
word_freq_reportnumeric133 unique values
0 missing
word_freq_addressesnumeric118 unique values
0 missing
word_freq_makenumeric142 unique values
0 missing
word_freq_businessnumeric197 unique values
0 missing
word_freq_emailnumeric229 unique values
0 missing
word_freq_younumeric575 unique values
0 missing
word_freq_creditnumeric148 unique values
0 missing
word_freq_yournumeric401 unique values
0 missing
word_freq_fontnumeric99 unique values
0 missing
word_freq_000numeric164 unique values
0 missing
word_freq_moneynumeric143 unique values
0 missing
word_freq_hpnumeric395 unique values
0 missing
word_freq_hplnumeric281 unique values
0 missing
word_freq_georgenumeric240 unique values
0 missing
word_freq_650numeric200 unique values
0 missing
word_freq_labnumeric156 unique values
0 missing

107 properties

4601
Number of instances (rows) of the dataset.
58
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
57
Number of numeric attributes.
1
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Entropy of the target attribute values.
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.21
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
60.6
Percentage of instances belonging to the most frequent class.
2788
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1480.64
Maximum kurtosis among attributes of the numeric type.
283.29
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
31.06
Maximum skewness among attributes of the numeric type.
606.35
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
241.17
Mean kurtosis among attributes of the numeric type.
6.15
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
11.19
Mean skewness among attributes of the numeric type.
15.19
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
5.26
Minimum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
1.59
Minimum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
39.4
Percentage of instances belonging to the least frequent class.
1813
Number of instances belonging to the least frequent class.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.61
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
1.72
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.28
Percentage of numeric attributes.
1.72
Percentage of nominal attributes.
First quartile of entropy among attributes.
50.66
First quartile of kurtosis among attributes of the numeric type.
0.06
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
5.85
First quartile of skewness among attributes of the numeric type.
0.32
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
127.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
9.72
Second quartile (Median) of skewness among attributes of the numeric type.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
299.07
Third quartile of kurtosis among attributes of the numeric type.
0.24
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
13.65
Third quartile of skewness among attributes of the numeric type.
0.84
Third quartile of standard deviation of attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task