Data
satimage

satimage

active ARFF Publicly available Visibility: public Uploaded 23-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_4376 study_6071 study_6379 study_7101 study_7346 study_11623 study_3582 study_4910 study_6454 study_6980 study_11460 study_11791 study_3484 study_4733 study_5972 study_6824 study_164 study_2018 study_2225 study_4291 study_11761 study_11825 study_12587 study_12913 study_798 study_4992 study_6535 study_12699 study_13322 study_4312 study_11266 study_11552 study_13369 study_1823 study_1876 study_2225 study_3133 study_3442 study_4312 study_7634 study_12570 study_4051 study_5693 study_3115 study_3858 study_4222 study_6980 study_12978 study_360 study_1651 study_1738 study_2567 study_4671 study_4812 study_6091 study_6303 study_6515 study_6884 study_10272 study_11266 study_13398 study_1163 study_1183 study_3442 study_11067 study_165 study_1894 study_2439 study_2888 study_2908 study_4164 study_12588
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Ashwin Srinivasan, Department of Statistics and Data Modeling, University of Strathclyde Source: https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite) Please cite: The database consists of the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with the central pixel in each neighbourhood. The aim is to predict this classification, given the multi-spectral values. In the sample database, the class of a pixel is coded as a number.

37 features

class (target)nominal6 unique values
0 missing
Aattrnumeric51 unique values
0 missing
Battrnumeric84 unique values
0 missing
Cattrnumeric76 unique values
0 missing
Dattrnumeric102 unique values
0 missing
Eattrnumeric51 unique values
0 missing
Fattrnumeric82 unique values
0 missing
A1attrnumeric76 unique values
0 missing
B2attrnumeric103 unique values
0 missing
C3attrnumeric50 unique values
0 missing
D4attrnumeric81 unique values
0 missing
E5attrnumeric78 unique values
0 missing
F6attrnumeric104 unique values
0 missing
A7attrnumeric51 unique values
0 missing
B8attrnumeric83 unique values
0 missing
C9attrnumeric78 unique values
0 missing
D10attrnumeric101 unique values
0 missing
E11attrnumeric50 unique values
0 missing
F12attrnumeric80 unique values
0 missing
A13attrnumeric77 unique values
0 missing
B14attrnumeric104 unique values
0 missing
C15attrnumeric50 unique values
0 missing
D16attrnumeric80 unique values
0 missing
E17attrnumeric78 unique values
0 missing
F18attrnumeric104 unique values
0 missing
A19attrnumeric51 unique values
0 missing
B20attrnumeric82 unique values
0 missing
C21attrnumeric75 unique values
0 missing
D22attrnumeric102 unique values
0 missing
E23attrnumeric50 unique values
0 missing
F24attrnumeric81 unique values
0 missing
A25attrnumeric77 unique values
0 missing
B26attrnumeric103 unique values
0 missing
C27attrnumeric50 unique values
0 missing
D28attrnumeric80 unique values
0 missing
E29attrnumeric77 unique values
0 missing
F30attrnumeric104 unique values
0 missing

107 properties

6430
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
36
Number of numeric attributes.
1
Number of nominal attributes.
1
Third quartile of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0
Mean of means among attributes of the numeric type.
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.84
First quartile of kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
6
Average number of distinct values among the attributes of the nominal type.
-0.52
First quartile of skewness among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.04
Mean skewness among attributes of the numeric type.
1
First quartile of standard deviation of attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
23.81
Percentage of instances belonging to the most frequent class.
1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.48
Entropy of the target attribute values.
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
1531
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.48
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.92
Minimum kurtosis among attributes of the numeric type.
-0
Second quartile (Median) of means among attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.56
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
1.28
Maximum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
-0
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
6
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6
The maximum number of distinct values among attributes of the nominal type.
-0.67
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
0.85
Third quartile of kurtosis among attributes of the numeric type.
0.19
Average class difference between consecutive instances.
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Maximum skewness among attributes of the numeric type.
1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-0
Third quartile of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1
Maximum standard deviation of attributes of the numeric type.
9.72
Percentage of instances belonging to the least frequent class.
97.3
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
625
Number of instances belonging to the least frequent class.
2.7
Percentage of nominal attributes.
0.67
Third quartile of skewness among attributes of the numeric type.
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.15
Mean kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.

11 tasks

7 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task