Data
satimage

satimage

active ARFF Publicly available Visibility: public Uploaded 23-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_141 study_271 study_66 study_334 study_370
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Ashwin Srinivasan, Department of Statistics and Data Modeling, University of Strathclyde Source: https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite) Please cite: The database consists of the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the classification associated with the central pixel in each neighbourhood. The aim is to predict this classification, given the multi-spectral values. In the sample database, the class of a pixel is coded as a number.

37 features

class (target)nominal6 unique values
0 missing
B14attrnumeric104 unique values
0 missing
A13attrnumeric77 unique values
0 missing
C15attrnumeric50 unique values
0 missing
D16attrnumeric80 unique values
0 missing
E17attrnumeric78 unique values
0 missing
F18attrnumeric104 unique values
0 missing
A19attrnumeric51 unique values
0 missing
B20attrnumeric82 unique values
0 missing
C21attrnumeric75 unique values
0 missing
D22attrnumeric102 unique values
0 missing
E23attrnumeric50 unique values
0 missing
F24attrnumeric81 unique values
0 missing
A25attrnumeric77 unique values
0 missing
B26attrnumeric103 unique values
0 missing
C27attrnumeric50 unique values
0 missing
D28attrnumeric80 unique values
0 missing
E29attrnumeric77 unique values
0 missing
F30attrnumeric104 unique values
0 missing
D4attrnumeric81 unique values
0 missing
Battrnumeric84 unique values
0 missing
Cattrnumeric76 unique values
0 missing
Dattrnumeric102 unique values
0 missing
Eattrnumeric51 unique values
0 missing
Fattrnumeric82 unique values
0 missing
A1attrnumeric76 unique values
0 missing
B2attrnumeric103 unique values
0 missing
C3attrnumeric50 unique values
0 missing
Aattrnumeric51 unique values
0 missing
E5attrnumeric78 unique values
0 missing
F6attrnumeric104 unique values
0 missing
A7attrnumeric51 unique values
0 missing
B8attrnumeric83 unique values
0 missing
C9attrnumeric78 unique values
0 missing
D10attrnumeric101 unique values
0 missing
E11attrnumeric50 unique values
0 missing
F12attrnumeric80 unique values
0 missing

107 properties

6430
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
36
Number of numeric attributes.
1
Number of nominal attributes.
0.19
Average class difference between consecutive instances.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.48
Entropy of the target attribute values.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.56
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
23.81
Percentage of instances belonging to the most frequent class.
1531
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1.28
Maximum kurtosis among attributes of the numeric type.
-0
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
6
The maximum number of distinct values among attributes of the nominal type.
0.92
Maximum skewness among attributes of the numeric type.
1
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.15
Mean kurtosis among attributes of the numeric type.
-0
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
6
Average number of distinct values among the attributes of the nominal type.
0.04
Mean skewness among attributes of the numeric type.
1
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.92
Minimum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
6
The minimal number of distinct values among attributes of the nominal type.
-0.67
Minimum skewness among attributes of the numeric type.
1
Minimum standard deviation of attributes of the numeric type.
9.72
Percentage of instances belonging to the least frequent class.
625
Number of instances belonging to the least frequent class.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.3
Percentage of numeric attributes.
2.7
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.84
First quartile of kurtosis among attributes of the numeric type.
-0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.52
First quartile of skewness among attributes of the numeric type.
1
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.48
Second quartile (Median) of kurtosis among attributes of the numeric type.
-0
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.85
Third quartile of kurtosis among attributes of the numeric type.
-0
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.67
Third quartile of skewness among attributes of the numeric type.
1
Third quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task