Data
collins

collins

active ARFF Publicly available Visibility: public Uploaded 28-09-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2838 study_4291 study_11301 study_11460 study_1715 study_7101 study_11266 study_11926 study_12664 study_12848 study_13025 study_1782 study_3097 study_3858 study_13152 study_1299 study_1893 study_2079 study_2794 study_2907 study_3367 study_4992 study_6416 study_6936 study_668 study_4677 study_4910 study_638 study_3858 study_4992 study_6071 study_6561 study_12215 study_13042 study_1011 study_3858 study_3920 study_10375 study_11791 study_2728 study_2907 study_3051 study_3524 study_6835 study_11370 study_12660 study_308 study_5093 study_2600 study_3239 study_3368 study_3941 study_4949 study_6669 study_6836 study_6862 study_6998 study_7102 study_7491
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: The following are data used in an analysis of the Brown and Frown corpora for my doctoral dissertation titled ``Variations in Written English: Characterizing Authors' Rhetorical Language Choices Across Corpora of Published Texts" (Completed at Carnegie Mellon Univ, 2003). The source of the corpora was the ICAME CD-ROM (get info at ). The data were generated from the texts using tagging and visualization software, Docuscope. The first row is the variable names. The genre of each text (assigned by the Brown corpus compilers) is in 'Genre' column and the corpus is listed in the 'corpus' column with 1=Brown and 2=Frown corpus. The dataset may be freely used and distributed for non-commercial purposes. Jeff Collins 11 July 2003 Information about the dataset CLASSTYPE: nominal CLASSINDEX: last

22 features

Corp.Genre (target)nominal15 unique values
0 missing
Text (ignore)nominal500 unique values
0 missing
FirstPersonnumeric139 unique values
0 missing
InnerThinkingnumeric262 unique values
0 missing
ThinkPositivenumeric154 unique values
0 missing
ThinkNegativenumeric216 unique values
0 missing
ThinkAheadnumeric172 unique values
0 missing
ThinkBacknumeric130 unique values
0 missing
Reasoningnumeric262 unique values
0 missing
Share_SocTiesnumeric260 unique values
0 missing
Direct_Activitynumeric78 unique values
0 missing
Interactingnumeric160 unique values
0 missing
Notifyingnumeric218 unique values
0 missing
LinearGuidancenumeric352 unique values
0 missing
WordPicturenumeric371 unique values
0 missing
SpaceIntervalnumeric228 unique values
0 missing
Motionnumeric123 unique values
0 missing
PastEventsnumeric283 unique values
0 missing
TimeIntervalnumeric173 unique values
0 missing
ShiftingEventsnumeric132 unique values
0 missing
Text_Coveragenumeric443 unique values
0 missing
Genrenominal15 unique values
0 missing
Counter (row identifier)numeric500 unique values
0 missing
Corpusnominal1 unique values
0 missing

107 properties

500
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
15
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
19
Number of numeric attributes.
3
Number of nominal attributes.
1.82
Average mutual information between the nominal attributes and the target attribute.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.63
First quartile of means among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
10.33
Average number of distinct values among the attributes of the nominal type.
0.54
First quartile of skewness among attributes of the numeric type.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
8.08
Standard deviation of the number of distinct values among attributes of the nominal type.
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.22
Mean skewness among attributes of the numeric type.
0.41
First quartile of standard deviation of attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.05
Mean standard deviation of attributes of the numeric type.
1.82
Second quartile (Median) of entropy among attributes.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
16
Percentage of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
0.76
Second quartile (Median) of kurtosis among attributes of the numeric type.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
3.65
Entropy of the target attribute values.
1
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
80
Number of instances belonging to the most frequent class.
-0.57
Minimum kurtosis among attributes of the numeric type.
1.32
Second quartile (Median) of means among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.65
Maximum entropy among attributes.
0.28
Minimum of means among attributes of the numeric type.
1.82
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.74
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
29.62
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0.87
Second quartile (Median) of skewness among attributes of the numeric type.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.14
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
31.49
Maximum of means among attributes of the numeric type.
3.65
Maximum mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.77
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Number of attributes divided by the number of instances.
15
The maximum number of distinct values among attributes of the nominal type.
-0.07
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
3.65
Third quartile of entropy among attributes.
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
2
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
4.22
Maximum skewness among attributes of the numeric type.
0.27
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
3.7
Third quartile of kurtosis among attributes of the numeric type.
0.97
Average class difference between consecutive instances.
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
5.21
Maximum standard deviation of attributes of the numeric type.
1.2
Percentage of instances belonging to the least frequent class.
86.36
Percentage of numeric attributes.
2.67
Third quartile of means among attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.82
Average entropy of the attributes.
6
Number of instances belonging to the least frequent class.
13.64
Percentage of nominal attributes.
3.65
Third quartile of mutual information between the nominal attributes and the target attribute.
0
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.4
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
4.03
Mean kurtosis among attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
First quartile of entropy among attributes.
1.61
Third quartile of skewness among attributes of the numeric type.
1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
3.31
Mean of means among attributes of the numeric type.
0.36
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.31
First quartile of kurtosis among attributes of the numeric type.
1.01
Third quartile of standard deviation of attributes of the numeric type.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001

11 tasks

11 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Corp.Genre
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Corp.Genre
0 runs - estimation_procedure: 10% Holdout set - target_feature: Corp.Genre
0 runs - estimation_procedure: Test on Training Data - target_feature: Corp.Genre
0 runs - estimation_procedure: Leave one out - target_feature: Corp.Genre
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Corp.Genre
0 runs - estimation_procedure: 33% Holdout set - target_feature: Corp.Genre
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Corp.Genre
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Corp.Genre
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Corp.Genre
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Corp.Genre
Define a new task