Data
ada_agnostic

ada_agnostic

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Datasets from the Agnostic Learning vs. Prior Knowledge Challenge (http://www.agnostic.inf.ethz.ch) Dataset from: http://www.agnostic.inf.ethz.ch/datasets.php Modified by TunedIT (converted to ARFF format) ADA is the marketing database The task of ADA is to discover high revenue people from census data. This is a two-class classification problem. The raw data from the census bureau is known as the Adult database in the UCI machine-learning repository. The 14 original attributes (features) include age, workclass, education, marital status, occupation, native country, etc. It contains continuous, binary and categorical features. This dataset is from the "agnostic learning track", i.e. has access to a preprocessed numeric representation eliminating categorical variables, but the identity of the features is not revealed. Data type: non-sparse Number of features: 48 Number of examples and check-sums: Pos_ex Neg_ex Tot_ex Check_sum Train 1029 3118 4147 6798109.00 Valid 103 312 415 681151.00 This dataset contains samples from both training and validation datasets.

49 features

label (target)nominal2 unique values
0 missing
attr25numeric2 unique values
0 missing
attr24numeric2 unique values
0 missing
attr26numeric2 unique values
0 missing
attr27numeric2 unique values
0 missing
attr28numeric2 unique values
0 missing
attr29numeric56 unique values
0 missing
attr30numeric2 unique values
0 missing
attr31numeric2 unique values
0 missing
attr32numeric2 unique values
0 missing
attr33numeric2 unique values
0 missing
attr34numeric2 unique values
0 missing
attr35numeric2 unique values
0 missing
attr36numeric2 unique values
0 missing
attr37numeric2 unique values
0 missing
attr38numeric2 unique values
0 missing
attr39numeric1 unique values
0 missing
attr40numeric2 unique values
0 missing
attr41numeric2 unique values
0 missing
attr42numeric2 unique values
0 missing
attr43numeric2 unique values
0 missing
attr44numeric2 unique values
0 missing
attr45numeric2 unique values
0 missing
attr46numeric2 unique values
0 missing
attr47numeric2 unique values
0 missing
attr12numeric2 unique values
0 missing
attr1numeric77 unique values
0 missing
attr2numeric2 unique values
0 missing
attr3numeric2 unique values
0 missing
attr4numeric2 unique values
0 missing
attr5numeric2 unique values
0 missing
attr6numeric2 unique values
0 missing
attr7numeric2 unique values
0 missing
attr8numeric2 unique values
0 missing
attr9numeric2 unique values
0 missing
attr10numeric2 unique values
0 missing
attr11numeric2 unique values
0 missing
attr0numeric2 unique values
0 missing
attr13numeric2 unique values
0 missing
attr14numeric363 unique values
0 missing
attr15numeric2 unique values
0 missing
attr16numeric2 unique values
0 missing
attr17numeric16 unique values
0 missing
attr18numeric2 unique values
0 missing
attr19numeric70 unique values
0 missing
attr20numeric2 unique values
0 missing
attr21numeric2 unique values
0 missing
attr22numeric2 unique values
0 missing
attr23numeric52 unique values
0 missing

107 properties

4562
Number of instances (rows) of the dataset.
49
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
48
Number of numeric attributes.
1
Number of nominal attributes.
0.63
Average class difference between consecutive instances.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.16
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.16
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.16
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Entropy of the target attribute values.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.25
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.16
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
75.19
Percentage of instances belonging to the most frequent class.
3430
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
4562
Maximum kurtosis among attributes of the numeric type.
634.02
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
67.54
Maximum skewness among attributes of the numeric type.
158.02
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
263.56
Mean kurtosis among attributes of the numeric type.
34.16
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
7.31
Mean skewness among attributes of the numeric type.
14.35
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-1.93
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
24.81
Percentage of instances belonging to the least frequent class.
1132
Number of instances belonging to the least frequent class.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.52
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.04
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.96
Percentage of numeric attributes.
2.04
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.67
First quartile of kurtosis among attributes of the numeric type.
0.03
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
2.04
First quartile of skewness among attributes of the numeric type.
0.18
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
9.61
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
3.41
Second quartile (Median) of skewness among attributes of the numeric type.
0.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
26.31
Third quartile of kurtosis among attributes of the numeric type.
0.3
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.32
Third quartile of skewness among attributes of the numeric type.
0.41
Third quartile of standard deviation of attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.53
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.23
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: label
0 runs - estimation_procedure: Leave one out - target_feature: label
0 runs - estimation_procedure: Test on Training Data - target_feature: label
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: label
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: label
0 runs - estimation_procedure: 33% Holdout set - target_feature: label
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: label
0 runs - estimation_procedure: 10% Holdout set - target_feature: label
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: label
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: label
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: label
Define a new task