Data
jm1

jm1

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1074 study_489
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

22 features

defects (target)nominal2 unique values
0 missing
locnumeric365 unique values
0 missing
v(g)numeric108 unique values
0 missing
ev(g)numeric74 unique values
0 missing
iv(g)numeric82 unique values
0 missing
nnumeric806 unique values
0 missing
vnumeric3991 unique values
0 missing
lnumeric55 unique values
0 missing
dnumeric2695 unique values
0 missing
inumeric4268 unique values
0 missing
enumeric6978 unique values
0 missing
bnumeric310 unique values
0 missing
tnumeric6761 unique values
0 missing
lOCodenumeric291 unique values
0 missing
lOCommentnumeric88 unique values
0 missing
lOBlanknumeric95 unique values
0 missing
locCodeAndCommentnumeric30 unique values
0 missing
uniq_Opnumeric68 unique values
5 missing
uniq_Opndnumeric171 unique values
5 missing
total_Opnumeric581 unique values
5 missing
total_Opndnumeric468 unique values
5 missing
branchCountnumeric146 unique values
5 missing

107 properties

10885
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
25
Number of missing values in the dataset.
5
Number of instances with at least one value missing.
21
Number of numeric attributes.
1
Number of nominal attributes.
Second quartile (Median) of entropy among attributes.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.24
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
80.65
Percentage of instances belonging to the most frequent class.
21963.75
Mean standard deviation of attributes of the numeric type.
392.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Entropy of the target attribute values.
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
8779
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
14.18
Second quartile (Median) of means among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
3.36
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.19
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
2765.99
Maximum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
13.65
Second quartile (Median) of skewness among attributes of the numeric type.
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
36836.37
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
4.55
Percentage of binary attributes.
22.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.05
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
1.92
Minimum skewness among attributes of the numeric type.
0.01
Percentage of missing values.
557.82
Third quartile of kurtosis among attributes of the numeric type.
1
Average class difference between consecutive instances.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
46.21
Maximum skewness among attributes of the numeric type.
0.16
Minimum standard deviation of attributes of the numeric type.
95.45
Percentage of numeric attributes.
57.25
Third quartile of means among attributes of the numeric type.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
434367.8
Maximum standard deviation of attributes of the numeric type.
19.35
Percentage of instances belonging to the least frequent class.
4.55
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
2106
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
16.65
Third quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
586.62
Mean kurtosis among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
187.29
First quartile of kurtosis among attributes of the numeric type.
125.93
Third quartile of standard deviation of attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1902.78
Mean of means among attributes of the numeric type.
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.7
First quartile of means among attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.05
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
10
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
9.06
First quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.25
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
15.84
Mean skewness among attributes of the numeric type.

11 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: Leave one out - target_feature: defects
0 runs - estimation_procedure: 33% Holdout set - target_feature: defects
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: defects
0 runs - estimation_procedure: Test on Training Data - target_feature: defects
0 runs - estimation_procedure: 10% Holdout set - target_feature: defects
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: defects
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: defects
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: defects
Define a new task