Data
jm1

jm1

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_7532 study_11722 study_2218 study_2921 study_4729 study_4730 study_1074 study_2120 study_7396 study_7533 study_9070 study_9806 study_11812 study_12619 study_4857 study_5258 study_6018 study_10634 study_489 study_4731 study_7628 study_8577 study_10000 study_4197 study_8675 study_1837 study_3304 study_10746 study_11147 study_11627 study_2735 study_5630 study_6120 study_9147 study_10240 study_11364 study_12645 study_1682 study_1838 study_3006 study_3412 study_5257 study_7629 study_9438 study_9903 study_11628 study_5163
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

22 features

defects (target)nominal2 unique values
0 missing
locnumeric365 unique values
0 missing
v(g)numeric108 unique values
0 missing
ev(g)numeric74 unique values
0 missing
iv(g)numeric82 unique values
0 missing
nnumeric806 unique values
0 missing
vnumeric3991 unique values
0 missing
lnumeric55 unique values
0 missing
dnumeric2695 unique values
0 missing
inumeric4268 unique values
0 missing
enumeric6978 unique values
0 missing
bnumeric310 unique values
0 missing
tnumeric6761 unique values
0 missing
lOCodenumeric291 unique values
0 missing
lOCommentnumeric88 unique values
0 missing
lOBlanknumeric95 unique values
0 missing
locCodeAndCommentnumeric30 unique values
0 missing
uniq_Opnumeric68 unique values
5 missing
uniq_Opndnumeric171 unique values
5 missing
total_Opnumeric581 unique values
5 missing
total_Opndnumeric468 unique values
5 missing
branchCountnumeric146 unique values
5 missing

107 properties

10885
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
25
Number of missing values in the dataset.
5
Number of instances with at least one value missing.
21
Number of numeric attributes.
1
Number of nominal attributes.
187.29
First quartile of kurtosis among attributes of the numeric type.
125.93
Third quartile of standard deviation of attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1902.78
Mean of means among attributes of the numeric type.
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.7
First quartile of means among attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.05
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
10
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
9.06
First quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.25
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
15.84
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.24
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
80.65
Percentage of instances belonging to the most frequent class.
21963.75
Mean standard deviation of attributes of the numeric type.
392.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Entropy of the target attribute values.
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
8779
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
14.18
Second quartile (Median) of means among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
3.36
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.19
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
2765.99
Maximum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
13.65
Second quartile (Median) of skewness among attributes of the numeric type.
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
36836.37
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
4.55
Percentage of binary attributes.
22.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.05
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
1.92
Minimum skewness among attributes of the numeric type.
0.01
Percentage of missing values.
557.82
Third quartile of kurtosis among attributes of the numeric type.
1
Average class difference between consecutive instances.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
46.21
Maximum skewness among attributes of the numeric type.
0.16
Minimum standard deviation of attributes of the numeric type.
95.45
Percentage of numeric attributes.
57.25
Third quartile of means among attributes of the numeric type.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.19
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
434367.8
Maximum standard deviation of attributes of the numeric type.
19.35
Percentage of instances belonging to the least frequent class.
4.55
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
2106
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
16.65
Third quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
586.62
Mean kurtosis among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes

11 tasks

0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: defects
0 runs - estimation_procedure: 33% Holdout set - target_feature: defects
0 runs - estimation_procedure: 10% Holdout set - target_feature: defects
0 runs - estimation_procedure: Leave one out - target_feature: defects
0 runs - estimation_procedure: Test on Training Data - target_feature: defects
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: defects
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: defects
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: defects
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: defects
Define a new task