Data
Click_prediction_small

Click_prediction_small

active ARFF Publicly available Visibility: public Uploaded 27-11-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_489 study_1164
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

10 features

click (target)nominal2 unique values
0 missing
impressionnumeric99 unique values
0 missing
url_hash (ignore)numeric6941 unique values
0 missing
ad_idnumeric19228 unique values
0 missing
advertiser_idnumeric6064 unique values
0 missing
depthnumeric3 unique values
0 missing
positionnumeric3 unique values
0 missing
query_id (ignore)numeric30748 unique values
0 missing
keyword_idnumeric19803 unique values
0 missing
title_idnumeric25321 unique values
0 missing
description_idnumeric22381 unique values
0 missing
user_idnumeric30114 unique values
0 missing

107 properties

39948
Number of instances (rows) of the dataset.
10
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
9
Number of numeric attributes.
1
Number of nominal attributes.
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.93
First quartile of kurtosis among attributes of the numeric type.
2978866.63
Third quartile of standard deviation of attributes of the numeric type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2225380.71
Mean of means among attributes of the numeric type.
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.03
First quartile of means among attributes of the numeric type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.17
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.26
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
-0.28
First quartile of skewness among attributes of the numeric type.
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
19.56
Mean skewness among attributes of the numeric type.
33.29
First quartile of standard deviation of attributes of the numeric type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.17
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1513460.57
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.26
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
83.16
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.4
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.65
Entropy of the target attribute values.
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
33220
Number of instances belonging to the most frequent class.
-1.05
Minimum kurtosis among attributes of the numeric type.
35194.43
Second quartile (Median) of means among attributes of the numeric type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
1.46
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.17
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
27130.69
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.78
Second quartile (Median) of skewness among attributes of the numeric type.
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
16016715.9
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
10
Percentage of binary attributes.
100914.82
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
-0.88
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.26
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
0.63
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
38.2
Third quartile of kurtosis among attributes of the numeric type.
0.72
Average class difference between consecutive instances.
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
159.06
Maximum skewness among attributes of the numeric type.
16.84
Percentage of instances belonging to the least frequent class.
90
Percentage of numeric attributes.
1921452.58
Third quartile of means among attributes of the numeric type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
7222259.54
Maximum standard deviation of attributes of the numeric type.
6728
Number of instances belonging to the least frequent class.
10
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.26
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
5.52
Third quartile of skewness among attributes of the numeric type.
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
3025.72
Mean kurtosis among attributes of the numeric type.

11 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: click
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: click
0 runs - estimation_procedure: Leave one out - target_feature: click
0 runs - estimation_procedure: 10% Holdout set - target_feature: click
0 runs - estimation_procedure: 33% Holdout set - target_feature: click
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: click
0 runs - estimation_procedure: Test on Training Data - target_feature: click
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: click
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: click
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: click
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: click
Define a new task