Data
bank-marketing

bank-marketing

active ARFF Publicly available Visibility: public Uploaded 21-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1259 study_4090 study_4139 study_8114 study_9155 study_10096 study_10942 study_11270 study_3820 study_5959 study_6128 study_11785 study_11901 study_8013 study_2022 study_8821 study_10850 study_3304 study_4197 study_5114 study_5259 study_10432 study_11548 study_113 study_3541 study_3822 study_5162 study_7996 study_8852 study_10094 study_10765 study_11548 study_11976 study_206 study_1074 study_4197 study_4586 study_9438 study_11549 study_4583 study_5535 study_6082 study_6669 study_11784 study_3293 study_10634 study_1634 study_3304 study_4732 study_5437 study_6384 study_12619 study_3194 study_5257 study_8256 study_9070 study_10342 study_10654 study_10751 study_10942
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

17 features

Class (target)nominal2 unique values
0 missing
V1numeric77 unique values
0 missing
V2nominal12 unique values
0 missing
V3nominal3 unique values
0 missing
V4nominal4 unique values
0 missing
V5nominal2 unique values
0 missing
V6numeric7168 unique values
0 missing
V7nominal2 unique values
0 missing
V8nominal2 unique values
0 missing
V9nominal3 unique values
0 missing
V10numeric31 unique values
0 missing
V11nominal12 unique values
0 missing
V12numeric1573 unique values
0 missing
V13numeric48 unique values
0 missing
V14numeric559 unique values
0 missing
V15numeric41 unique values
0 missing
V16nominal4 unique values
0 missing

107 properties

45211
Number of instances (rows) of the dataset.
17
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
7
Number of numeric attributes.
10
Number of nominal attributes.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.04
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
23.53
Percentage of binary attributes.
10.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
34.95
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
12
The maximum number of distinct values among attributes of the nominal type.
0.09
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
2.28
Third quartile of entropy among attributes.
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
41.85
Maximum skewness among attributes of the numeric type.
2.3
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
140.75
Third quartile of kurtosis among attributes of the numeric type.
0.84
Average class difference between consecutive instances.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3044.77
Maximum standard deviation of attributes of the numeric type.
11.7
Percentage of instances belonging to the least frequent class.
41.18
Percentage of numeric attributes.
258.16
Third quartile of means among attributes of the numeric type.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.42
Average entropy of the attributes.
5289
Number of instances belonging to the least frequent class.
58.82
Percentage of nominal attributes.
0.03
Third quartile of mutual information between the nominal attributes and the target attribute.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
673.03
Mean kurtosis among attributes of the numeric type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.79
First quartile of entropy among attributes.
8.36
Third quartile of skewness among attributes of the numeric type.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
245.82
Mean of means among attributes of the numeric type.
0.12
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.32
First quartile of kurtosis among attributes of the numeric type.
257.53
Third quartile of standard deviation of attributes of the numeric type.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Average mutual information between the nominal attributes and the target attribute.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.76
First quartile of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
94.44
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.98
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.6
Average number of distinct values among the attributes of the nominal type.
0.68
First quartile of skewness among attributes of the numeric type.
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
8.81
Mean skewness among attributes of the numeric type.
3.1
First quartile of standard deviation of attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
88.3
Percentage of instances belonging to the most frequent class.
489.54
Mean standard deviation of attributes of the numeric type.
1.18
Second quartile (Median) of entropy among attributes.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Entropy of the target attribute values.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
39922
Number of instances belonging to the most frequent class.
0.13
Minimal entropy among attributes.
18.15
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.06
Maximum entropy among attributes.
-1.06
Minimum kurtosis among attributes of the numeric type.
40.2
Second quartile (Median) of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.12
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
4506.86
Maximum kurtosis among attributes of the numeric type.
0.58
Minimum of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
1362.27
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
3.14
Second quartile (Median) of skewness among attributes of the numeric type.

11 tasks

0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task