Data
first-order-theorem-proving

first-order-theorem-proving

active ARFF Publicly available Visibility: public Uploaded 22-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_436 study_2120 study_3293 study_9902 study_10853 study_1684 study_5436 study_6873 study_8821 study_9244 study_9590 study_936 study_2737 study_5628 study_10842 study_5161 study_5355 study_12765 study_5162 study_7208 study_4193 study_6674 study_8674 study_10232 study_10244 study_10432 study_11812 study_11933 study_3294 study_4583 study_8577 study_2023 study_7300 study_2493 study_8774 study_11976 study_12920 study_2834 study_3006 study_3007 study_3304 study_4192 study_5441 study_7949 study_7996 study_10001 study_10244 study_10252 study_11254 study_5355 study_6415 study_8774 study_9245
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

52 features

Class (target)nominal6 unique values
0 missing
V1numeric1309 unique values
0 missing
V2numeric1194 unique values
0 missing
V3numeric1148 unique values
0 missing
V4numeric1261 unique values
0 missing
V5numeric1394 unique values
0 missing
V6numeric1030 unique values
0 missing
V7numeric1309 unique values
0 missing
V8numeric49 unique values
0 missing
V9numeric1883 unique values
0 missing
V10numeric29 unique values
0 missing
V11numeric2431 unique values
0 missing
V12numeric219 unique values
0 missing
V13numeric3079 unique values
0 missing
V14numeric82 unique values
0 missing
V15numeric4674 unique values
0 missing
V16numeric3095 unique values
0 missing
V17numeric1969 unique values
0 missing
V18numeric134 unique values
0 missing
V19numeric3368 unique values
0 missing
V20numeric108 unique values
0 missing
V21numeric3841 unique values
0 missing
V22numeric103 unique values
0 missing
V23numeric4182 unique values
0 missing
V24numeric121 unique values
0 missing
V25numeric4393 unique values
0 missing
V26numeric803 unique values
0 missing
V27numeric4560 unique values
0 missing
V28numeric1023 unique values
0 missing
V29numeric4709 unique values
0 missing
V30numeric69 unique values
0 missing
V31numeric79 unique values
0 missing
V32numeric82 unique values
0 missing
V33numeric23 unique values
0 missing
V34numeric31 unique values
0 missing
V35numeric48 unique values
0 missing
V36numeric70 unique values
0 missing
V37numeric1053 unique values
0 missing
V38numeric1569 unique values
0 missing
V39numeric893 unique values
0 missing
V40numeric72 unique values
0 missing
V41numeric1041 unique values
0 missing
V42numeric37 unique values
0 missing
V43numeric29 unique values
0 missing
V44numeric1698 unique values
0 missing
V45numeric2246 unique values
0 missing
V46numeric1941 unique values
0 missing
V47numeric1676 unique values
0 missing
V48numeric1703 unique values
0 missing
V49numeric2315 unique values
0 missing
V50numeric1537 unique values
0 missing
V51numeric2462 unique values
0 missing

107 properties

6118
Number of instances (rows) of the dataset.
52
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
51
Number of numeric attributes.
1
Number of nominal attributes.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
6
Average number of distinct values among the attributes of the nominal type.
1.33
First quartile of skewness among attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.49
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
7.44
Mean skewness among attributes of the numeric type.
0.97
First quartile of standard deviation of attributes of the numeric type.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.46
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
41.75
Percentage of instances belonging to the most frequent class.
0.99
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.3
Entropy of the target attribute values.
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
2554
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
15.29
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.97
Minimum kurtosis among attributes of the numeric type.
-0
Second quartile (Median) of means among attributes of the numeric type.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.58
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
2944.65
Maximum kurtosis among attributes of the numeric type.
-0.04
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
3.14
Second quartile (Median) of skewness among attributes of the numeric type.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
6
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6
The maximum number of distinct values among attributes of the nominal type.
-1.88
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
137.49
Third quartile of kurtosis among attributes of the numeric type.
0.37
Average class difference between consecutive instances.
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
53.78
Maximum skewness among attributes of the numeric type.
0.84
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0
Third quartile of means among attributes of the numeric type.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.51
Maximum standard deviation of attributes of the numeric type.
7.94
Percentage of instances belonging to the least frequent class.
98.08
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.49
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
486
Number of instances belonging to the least frequent class.
1.92
Percentage of nominal attributes.
10.45
Third quartile of skewness among attributes of the numeric type.
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
228.19
Mean kurtosis among attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1
Third quartile of standard deviation of attributes of the numeric type.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0
Mean of means among attributes of the numeric type.
0.83
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.33
First quartile of kurtosis among attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.49
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.05
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.01
First quartile of means among attributes of the numeric type.
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.

11 tasks

0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task