Data
breast-w

breast-w

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2838 study_3504 study_6396 study_8366 study_2479 study_4332 study_6396 study_8366 study_12587 study_13152 study_1629 study_3178 study_7240 study_8366 study_10340 study_11845 study_1276 study_1695 study_6645 study_8366 study_1125 study_3013 study_4890 study_7135 study_8366 study_11825 study_164 study_6645 study_6668 study_6786 study_7152 study_8366 study_11237 study_13007 study_153 study_1256 study_3115 study_6071 study_6997 study_8366 study_10252 study_153 study_1629 study_4606 study_8366 study_10340 study_11381 study_11067 study_3133 study_3880 study_6786 study_10167 study_13369 study_638 study_1544 study_1893 study_3007 study_4067 study_10654 study_11425 study_137 study_928 study_1999 study_2842 study_4614 study_7635 study_11792 study_12665 study_12979
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Please cite:

10 features

Class (target)nominal2 unique values
0 missing
Clump_Thicknessnumeric10 unique values
0 missing
Cell_Size_Uniformitynumeric10 unique values
0 missing
Cell_Shape_Uniformitynumeric10 unique values
0 missing
Marginal_Adhesionnumeric10 unique values
0 missing
Single_Epi_Cell_Sizenumeric10 unique values
0 missing
Bare_Nucleinumeric10 unique values
16 missing
Bland_Chromatinnumeric10 unique values
0 missing
Normal_Nucleolinumeric10 unique values
0 missing
Mitosesnumeric9 unique values
0 missing

107 properties

699
Number of instances (rows) of the dataset.
10
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
16
Number of missing values in the dataset.
16
Number of instances with at least one value missing.
9
Number of numeric attributes.
1
Number of nominal attributes.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
1.04
First quartile of skewness among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.48
Mean skewness among attributes of the numeric type.
2.33
First quartile of standard deviation of attributes of the numeric type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
65.52
Percentage of instances belonging to the most frequent class.
2.75
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.93
Entropy of the target attribute values.
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
458
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.8
Minimum kurtosis among attributes of the numeric type.
3.21
Second quartile (Median) of means among attributes of the numeric type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
12.66
Maximum kurtosis among attributes of the numeric type.
1.59
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
4.42
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.23
Second quartile (Median) of skewness among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
10
Percentage of binary attributes.
2.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
0.59
Minimum skewness among attributes of the numeric type.
2.29
Percentage of instances having missing values.
1.58
Third quartile of kurtosis among attributes of the numeric type.
0.63
Average class difference between consecutive instances.
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.56
Maximum skewness among attributes of the numeric type.
1.72
Minimum standard deviation of attributes of the numeric type.
0.23
Percentage of missing values.
3.49
Third quartile of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.06
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.64
Maximum standard deviation of attributes of the numeric type.
34.48
Percentage of instances belonging to the least frequent class.
90
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
241
Number of instances belonging to the least frequent class.
10
Percentage of nominal attributes.
1.62
Third quartile of skewness among attributes of the numeric type.
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.68
Mean kurtosis among attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
3.05
Third quartile of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.06
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
3.14
Mean of means among attributes of the numeric type.
0.04
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.31
First quartile of kurtosis among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.06
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.84
First quartile of means among attributes of the numeric type.

11 tasks

10 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task