Data
har

har

active ARFF Publicly available Visibility: public Uploaded 22-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto and Xavier Parra Source: UCI Please cite: Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013. Title: Human Activity Recognition Using Smartphones Abstract: Human Activity Recognition database built from the recordings of 30 subjects performing activities of daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors. Source: Jorge L. Reyes-Ortiz(1,2), Davide Anguita(1), Alessandro Ghio(1), Luca Oneto(1) and Xavier Parra(2) 1 - Smartlab - Non-Linear Complex Systems Laboratory DITEN - Università degli Studi di Genova, Genoa (I-16145), Italy. 2 - CETpD - Technical Research Centre for Dependency Care and Autonomous Living Universitat Politècnica de Catalunya (BarcelonaTech). Vilanova i la Geltrú (08800), Spain, activityrecognition '@' smartlab.ws Data Set Information: The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data. The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. Check the README.txt file for further details about this dataset. A video of the experiment including an example of the 6 recorded activities with one of the participants can be seen in the following link: [Web Link] Attribute Information: For each record in the dataset it is provided: - Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration. - Triaxial Angular velocity from the gyroscope. - A 561-feature vector with time and frequency domain variables. - Its activity label. - An identifier of the subject who carried out the experiment. Relevant Papers: Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012 Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge L. Reyes-Ortiz. Energy Efficient Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. Journal of Universal Computer Science. Special Issue in Ambient Assisted Living: Home Care. Volume 19, Issue 9. May 2013 Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. 4th International Workshop of Ambient Assited Living, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings. Lecture Notes in Computer Science 2012, pp 216-223. Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra-Llanas, Davide Anguita, Joan Cabestany, Andreu Català. Human Activity and Motion Disorder Recognition: Towards Smarter Interactive Cognitive Environments. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

562 features

Class (target)nominal6 unique values
0 missing
V1numeric9527 unique values
0 missing
V2numeric9157 unique values
0 missing
V3numeric9562 unique values
0 missing
V4numeric9728 unique values
0 missing
V5numeric10077 unique values
0 missing
V6numeric10039 unique values
0 missing
V7numeric9643 unique values
0 missing
V8numeric10060 unique values
0 missing
V9numeric10055 unique values
0 missing
V10numeric7066 unique values
0 missing
V11numeric7148 unique values
0 missing
V12numeric7134 unique values
0 missing
V13numeric7103 unique values
0 missing
V14numeric7158 unique values
0 missing
V15numeric7035 unique values
0 missing
V16numeric10004 unique values
0 missing
V17numeric6216 unique values
0 missing
V18numeric6839 unique values
0 missing
V19numeric7547 unique values
0 missing
V20numeric9473 unique values
0 missing
V21numeric9990 unique values
0 missing
V22numeric10045 unique values
0 missing
V23numeric4949 unique values
0 missing
V24numeric7894 unique values
0 missing
V25numeric8732 unique values
0 missing
V26numeric10248 unique values
0 missing
V27numeric10239 unique values
0 missing
V28numeric10244 unique values
0 missing
V29numeric10228 unique values
0 missing
V30numeric10233 unique values
0 missing
V31numeric10219 unique values
0 missing
V32numeric10219 unique values
0 missing
V33numeric10237 unique values
0 missing
V34numeric10256 unique values
0 missing
V35numeric10247 unique values
0 missing
V36numeric10233 unique values
0 missing
V37numeric10230 unique values
0 missing
V38numeric10262 unique values
0 missing
V39numeric10256 unique values
0 missing
V40numeric10255 unique values
0 missing
V41numeric10008 unique values
0 missing
V42numeric10220 unique values
0 missing
V43numeric10222 unique values
0 missing
V44numeric9280 unique values
0 missing
V45numeric9600 unique values
0 missing
V46numeric9739 unique values
0 missing
V47numeric9227 unique values
0 missing
V48numeric9560 unique values
0 missing
V49numeric9739 unique values
0 missing
V50numeric7804 unique values
0 missing
V51numeric8038 unique values
0 missing
V52numeric7941 unique values
0 missing
V53numeric7738 unique values
0 missing
V54numeric7918 unique values
0 missing
V55numeric7978 unique values
0 missing
V56numeric10258 unique values
0 missing
V57numeric10112 unique values
0 missing
V58numeric10064 unique values
0 missing
V59numeric9683 unique values
0 missing
V60numeric9174 unique values
0 missing
V61numeric9499 unique values
0 missing
V62numeric9653 unique values
0 missing
V63numeric4288 unique values
0 missing
V64numeric1638 unique values
0 missing
V65numeric3941 unique values
0 missing
V66numeric10221 unique values
0 missing
V67numeric10224 unique values
0 missing
V68numeric10232 unique values
0 missing
V69numeric10219 unique values
0 missing
V70numeric10262 unique values
0 missing
V71numeric10249 unique values
0 missing
V72numeric10252 unique values
0 missing
V73numeric10251 unique values
0 missing
V74numeric10245 unique values
0 missing
V75numeric10240 unique values
0 missing
V76numeric10231 unique values
0 missing
V77numeric10237 unique values
0 missing
V78numeric10250 unique values
0 missing
V79numeric10253 unique values
0 missing
V80numeric10260 unique values
0 missing
V81numeric9557 unique values
0 missing
V82numeric9883 unique values
0 missing
V83numeric9959 unique values
0 missing
V84numeric9697 unique values
0 missing
V85numeric9875 unique values
0 missing
V86numeric9669 unique values
0 missing
V87numeric9670 unique values
0 missing
V88numeric9886 unique values
0 missing
V89numeric9697 unique values
0 missing
V90numeric7074 unique values
0 missing
V91numeric7096 unique values
0 missing
V92numeric6997 unique values
0 missing
V93numeric7089 unique values
0 missing
V94numeric7109 unique values
0 missing
V95numeric7088 unique values
0 missing
V96numeric9676 unique values
0 missing
V97numeric5990 unique values
0 missing
V98numeric6637 unique values
0 missing
V99numeric6177 unique values
0 missing
V100numeric9671 unique values
0 missing
V101numeric9837 unique values
0 missing
V102numeric9788 unique values
0 missing
V103numeric5626 unique values
0 missing
V104numeric6079 unique values
0 missing
V105numeric6736 unique values
0 missing
V106numeric10237 unique values
0 missing
V107numeric10203 unique values
0 missing
V108numeric10235 unique values
0 missing
V109numeric10235 unique values
0 missing
V110numeric10232 unique values
0 missing
V111numeric10235 unique values
0 missing
V112numeric10229 unique values
0 missing
V113numeric10224 unique values
0 missing
V114numeric10233 unique values
0 missing
V115numeric10218 unique values
0 missing
V116numeric10230 unique values
0 missing
V117numeric10234 unique values
0 missing
V118numeric10246 unique values
0 missing
V119numeric10234 unique values
0 missing
V120numeric10230 unique values
0 missing
V121numeric9499 unique values
0 missing
V122numeric9969 unique values
0 missing
V123numeric9822 unique values
0 missing
V124numeric9943 unique values
0 missing
V125numeric10034 unique values
0 missing
V126numeric9988 unique values
0 missing
V127numeric9940 unique values
0 missing
V128numeric10000 unique values
0 missing
V129numeric9960 unique values
0 missing
V130numeric7421 unique values
0 missing
V131numeric7234 unique values
0 missing
V132numeric7413 unique values
0 missing
V133numeric7348 unique values
0 missing
V134numeric7223 unique values
0 missing
V135numeric7386 unique values
0 missing
V136numeric10075 unique values
0 missing
V137numeric6718 unique values
0 missing
V138numeric7005 unique values
0 missing
V139numeric7127 unique values
0 missing
V140numeric9868 unique values
0 missing
V141numeric9945 unique values
0 missing
V142numeric9864 unique values
0 missing
V143numeric8005 unique values
0 missing
V144numeric7940 unique values
0 missing
V145numeric7317 unique values
0 missing
V146numeric10243 unique values
0 missing
V147numeric10241 unique values
0 missing
V148numeric10235 unique values
0 missing
V149numeric10239 unique values
0 missing
V150numeric10219 unique values
0 missing
V151numeric10219 unique values
0 missing
V152numeric10233 unique values
0 missing
V153numeric10236 unique values
0 missing
V154numeric10253 unique values
0 missing
V155numeric10245 unique values
0 missing
V156numeric10245 unique values
0 missing
V157numeric10231 unique values
0 missing
V158numeric10251 unique values
0 missing
V159numeric10259 unique values
0 missing
V160numeric10274 unique values
0 missing
V161numeric9599 unique values
0 missing
V162numeric9648 unique values
0 missing
V163numeric9738 unique values
0 missing
V164numeric9794 unique values
0 missing
V165numeric9708 unique values
0 missing
V166numeric9617 unique values
0 missing
V167numeric9785 unique values
0 missing
V168numeric9642 unique values
0 missing
V169numeric9622 unique values
0 missing
V170numeric7115 unique values
0 missing
V171numeric7064 unique values
0 missing
V172numeric7147 unique values
0 missing
V173numeric7142 unique values
0 missing
V174numeric7029 unique values
0 missing
V175numeric7007 unique values
0 missing
V176numeric9691 unique values
0 missing
V177numeric6196 unique values
0 missing
V178numeric5812 unique values
0 missing
V179numeric5952 unique values
0 missing
V180numeric9717 unique values
0 missing
V181numeric9538 unique values
0 missing
V182numeric9496 unique values
0 missing
V183numeric6242 unique values
0 missing
V184numeric6972 unique values
0 missing
V185numeric6206 unique values
0 missing
V186numeric10232 unique values
0 missing
V187numeric10203 unique values
0 missing
V188numeric10249 unique values
0 missing
V189numeric10223 unique values
0 missing
V190numeric10230 unique values
0 missing
V191numeric10195 unique values
0 missing
V192numeric10218 unique values
0 missing
V193numeric10230 unique values
0 missing
V194numeric10252 unique values
0 missing
V195numeric10226 unique values
0 missing
V196numeric10221 unique values
0 missing
V197numeric10227 unique values
0 missing
V198numeric10252 unique values
0 missing
V199numeric10237 unique values
0 missing
V200numeric10233 unique values
0 missing
V201numeric10046 unique values
0 missing
V202numeric10010 unique values
0 missing
V203numeric10038 unique values
0 missing
V204numeric7433 unique values
0 missing
V205numeric6910 unique values
0 missing
V206numeric10046 unique values
0 missing
V207numeric7258 unique values
0 missing
V208numeric9986 unique values
0 missing
V209numeric7151 unique values
0 missing
V210numeric10245 unique values
0 missing
V211numeric10252 unique values
0 missing
V212numeric10225 unique values
0 missing
V213numeric10244 unique values
0 missing
V214numeric10046 unique values
0 missing
V215numeric10010 unique values
0 missing
V216numeric10038 unique values
0 missing
V217numeric7433 unique values
0 missing
V218numeric6910 unique values
0 missing
V219numeric10046 unique values
0 missing
V220numeric7258 unique values
0 missing
V221numeric9986 unique values
0 missing
V222numeric7151 unique values
0 missing
V223numeric10245 unique values
0 missing
V224numeric10252 unique values
0 missing
V225numeric10225 unique values
0 missing
V226numeric10244 unique values
0 missing
V227numeric9710 unique values
0 missing
V228numeric9796 unique values
0 missing
V229numeric9675 unique values
0 missing
V230numeric7131 unique values
0 missing
V231numeric7004 unique values
0 missing
V232numeric9710 unique values
0 missing
V233numeric6353 unique values
0 missing
V234numeric9616 unique values
0 missing
V235numeric7421 unique values
0 missing
V236numeric10237 unique values
0 missing
V237numeric10246 unique values
0 missing
V238numeric10234 unique values
0 missing
V239numeric10257 unique values
0 missing
V240numeric10081 unique values
0 missing
V241numeric10087 unique values
0 missing
V242numeric10085 unique values
0 missing
V243numeric7579 unique values
0 missing
V244numeric7217 unique values
0 missing
V245numeric10081 unique values
0 missing
V246numeric7399 unique values
0 missing
V247numeric10088 unique values
0 missing
V248numeric8310 unique values
0 missing
V249numeric10246 unique values
0 missing
V250numeric10246 unique values
0 missing
V251numeric10235 unique values
0 missing
V252numeric10233 unique values
0 missing
V253numeric9696 unique values
0 missing
V254numeric9795 unique values
0 missing
V255numeric9669 unique values
0 missing
V256numeric7190 unique values
0 missing
V257numeric6907 unique values
0 missing
V258numeric9696 unique values
0 missing
V259numeric5984 unique values
0 missing
V260numeric9609 unique values
0 missing
V261numeric7339 unique values
0 missing
V262numeric10230 unique values
0 missing
V263numeric10226 unique values
0 missing
V264numeric10225 unique values
0 missing
V265numeric10243 unique values
0 missing
V266numeric9773 unique values
0 missing
V267numeric10032 unique values
0 missing
V268numeric9948 unique values
0 missing
V269numeric9738 unique values
0 missing
V270numeric10075 unique values
0 missing
V271numeric10037 unique values
0 missing
V272numeric9733 unique values
0 missing
V273numeric10046 unique values
0 missing
V274numeric9990 unique values
0 missing
V275numeric9606 unique values
0 missing
V276numeric10051 unique values
0 missing
V277numeric10089 unique values
0 missing
V278numeric9482 unique values
0 missing
V279numeric9726 unique values
0 missing
V280numeric9658 unique values
0 missing
V281numeric9942 unique values
0 missing
V282numeric6137 unique values
0 missing
V283numeric7476 unique values
0 missing
V284numeric7429 unique values
0 missing
V285numeric9704 unique values
0 missing
V286numeric9868 unique values
0 missing
V287numeric9824 unique values
0 missing
V288numeric4975 unique values
0 missing
V289numeric5228 unique values
0 missing
V290numeric5233 unique values
0 missing
V291numeric30 unique values
0 missing
V292numeric26 unique values
0 missing
V293numeric27 unique values
0 missing
V294numeric10239 unique values
0 missing
V295numeric10247 unique values
0 missing
V296numeric10242 unique values
0 missing
V297numeric10256 unique values
0 missing
V298numeric10260 unique values
0 missing
V299numeric10244 unique values
0 missing
V300numeric10211 unique values
0 missing
V301numeric10247 unique values
0 missing
V302numeric10263 unique values
0 missing
V303numeric6075 unique values
0 missing
V304numeric5801 unique values
0 missing
V305numeric6085 unique values
0 missing
V306numeric6096 unique values
0 missing
V307numeric5965 unique values
0 missing
V308numeric5952 unique values
0 missing
V309numeric5708 unique values
0 missing
V310numeric5179 unique values
0 missing
V311numeric6104 unique values
0 missing
V312numeric6199 unique values
0 missing
V313numeric5956 unique values
0 missing
V314numeric5664 unique values
0 missing
V315numeric6126 unique values
0 missing
V316numeric6200 unique values
0 missing
V317numeric7558 unique values
0 missing
V318numeric6510 unique values
0 missing
V319numeric6396 unique values
0 missing
V320numeric6505 unique values
0 missing
V321numeric6722 unique values
0 missing
V322numeric6896 unique values
0 missing
V323numeric6757 unique values
0 missing
V324numeric5842 unique values
0 missing
V325numeric7522 unique values
0 missing
V326numeric6590 unique values
0 missing
V327numeric6850 unique values
0 missing
V328numeric6598 unique values
0 missing
V329numeric7493 unique values
0 missing
V330numeric6626 unique values
0 missing
V331numeric7503 unique values
0 missing
V332numeric6569 unique values
0 missing
V333numeric6202 unique values
0 missing
V334numeric5934 unique values
0 missing
V335numeric6115 unique values
0 missing
V336numeric6649 unique values
0 missing
V337numeric6729 unique values
0 missing
V338numeric5990 unique values
0 missing
V339numeric7422 unique values
0 missing
V340numeric6108 unique values
0 missing
V341numeric6285 unique values
0 missing
V342numeric6684 unique values
0 missing
V343numeric7447 unique values
0 missing
V344numeric6033 unique values
0 missing
V345numeric9656 unique values
0 missing
V346numeric9885 unique values
0 missing
V347numeric9755 unique values
0 missing
V348numeric9600 unique values
0 missing
V349numeric9867 unique values
0 missing
V350numeric9663 unique values
0 missing
V351numeric9746 unique values
0 missing
V352numeric9844 unique values
0 missing
V353numeric9694 unique values
0 missing
V354numeric9488 unique values
0 missing
V355numeric9810 unique values
0 missing
V356numeric9627 unique values
0 missing
V357numeric9370 unique values
0 missing
V358numeric9757 unique values
0 missing
V359numeric9826 unique values
0 missing
V360numeric9782 unique values
0 missing
V361numeric5985 unique values
0 missing
V362numeric6638 unique values
0 missing
V363numeric6174 unique values
0 missing
V364numeric9761 unique values
0 missing
V365numeric9788 unique values
0 missing
V366numeric9754 unique values
0 missing
V367numeric4621 unique values
0 missing
V368numeric4685 unique values
0 missing
V369numeric4642 unique values
0 missing
V370numeric49 unique values
0 missing
V371numeric49 unique values
0 missing
V372numeric51 unique values
0 missing
V373numeric10248 unique values
0 missing
V374numeric10236 unique values
0 missing
V375numeric10245 unique values
0 missing
V376numeric10243 unique values
0 missing
V377numeric10207 unique values
0 missing
V378numeric10205 unique values
0 missing
V379numeric10139 unique values
0 missing
V380numeric10215 unique values
0 missing
V381numeric10127 unique values
0 missing
V382numeric5386 unique values
0 missing
V383numeric5745 unique values
0 missing
V384numeric6000 unique values
0 missing
V385numeric6032 unique values
0 missing
V386numeric5849 unique values
0 missing
V387numeric5946 unique values
0 missing
V388numeric5637 unique values
0 missing
V389numeric4606 unique values
0 missing
V390numeric5649 unique values
0 missing
V391numeric6149 unique values
0 missing
V392numeric5924 unique values
0 missing
V393numeric5666 unique values
0 missing
V394numeric5876 unique values
0 missing
V395numeric6201 unique values
0 missing
V396numeric6697 unique values
0 missing
V397numeric6236 unique values
0 missing
V398numeric6399 unique values
0 missing
V399numeric6269 unique values
0 missing
V400numeric6331 unique values
0 missing
V401numeric6746 unique values
0 missing
V402numeric6303 unique values
0 missing
V403numeric5210 unique values
0 missing
V404numeric6502 unique values
0 missing
V405numeric6497 unique values
0 missing
V406numeric6680 unique values
0 missing
V407numeric6247 unique values
0 missing
V408numeric6589 unique values
0 missing
V409numeric6455 unique values
0 missing
V410numeric6446 unique values
0 missing
V411numeric6408 unique values
0 missing
V412numeric6026 unique values
0 missing
V413numeric5760 unique values
0 missing
V414numeric5858 unique values
0 missing
V415numeric6369 unique values
0 missing
V416numeric6662 unique values
0 missing
V417numeric5270 unique values
0 missing
V418numeric6596 unique values
0 missing
V419numeric5866 unique values
0 missing
V420numeric6013 unique values
0 missing
V421numeric6633 unique values
0 missing
V422numeric6382 unique values
0 missing
V423numeric5863 unique values
0 missing
V424numeric9971 unique values
0 missing
V425numeric9947 unique values
0 missing
V426numeric9958 unique values
0 missing
V427numeric9927 unique values
0 missing
V428numeric10015 unique values
0 missing
V429numeric9974 unique values
0 missing
V430numeric9975 unique values
0 missing
V431numeric9956 unique values
0 missing
V432numeric9966 unique values
0 missing
V433numeric9957 unique values
0 missing
V434numeric10034 unique values
0 missing
V435numeric9906 unique values
0 missing
V436numeric9054 unique values
0 missing
V437numeric9529 unique values
0 missing
V438numeric9541 unique values
0 missing
V439numeric10010 unique values
0 missing
V440numeric6552 unique values
0 missing
V441numeric6780 unique values
0 missing
V442numeric6940 unique values
0 missing
V443numeric9899 unique values
0 missing
V444numeric9823 unique values
0 missing
V445numeric9830 unique values
0 missing
V446numeric6074 unique values
0 missing
V447numeric5998 unique values
0 missing
V448numeric5857 unique values
0 missing
V449numeric28 unique values
0 missing
V450numeric30 unique values
0 missing
V451numeric26 unique values
0 missing
V452numeric10233 unique values
0 missing
V453numeric10251 unique values
0 missing
V454numeric10254 unique values
0 missing
V455numeric10251 unique values
0 missing
V456numeric10241 unique values
0 missing
V457numeric10246 unique values
0 missing
V458numeric10239 unique values
0 missing
V459numeric10252 unique values
0 missing
V460numeric10238 unique values
0 missing
V461numeric6486 unique values
0 missing
V462numeric6196 unique values
0 missing
V463numeric6042 unique values
0 missing
V464numeric5857 unique values
0 missing
V465numeric6092 unique values
0 missing
V466numeric6135 unique values
0 missing
V467numeric6000 unique values
0 missing
V468numeric5246 unique values
0 missing
V469numeric6542 unique values
0 missing
V470numeric6107 unique values
0 missing
V471numeric6145 unique values
0 missing
V472numeric5903 unique values
0 missing
V473numeric6523 unique values
0 missing
V474numeric5987 unique values
0 missing
V475numeric7004 unique values
0 missing
V476numeric5729 unique values
0 missing
V477numeric5456 unique values
0 missing
V478numeric5467 unique values
0 missing
V479numeric5374 unique values
0 missing
V480numeric5833 unique values
0 missing
V481numeric5997 unique values
0 missing
V482numeric5184 unique values
0 missing
V483numeric6817 unique values
0 missing
V484numeric5586 unique values
0 missing
V485numeric5552 unique values
0 missing
V486numeric5985 unique values
0 missing
V487numeric6802 unique values
0 missing
V488numeric5542 unique values
0 missing
V489numeric6780 unique values
0 missing
V490numeric6058 unique values
0 missing
V491numeric5891 unique values
0 missing
V492numeric5676 unique values
0 missing
V493numeric5790 unique values
0 missing
V494numeric6159 unique values
0 missing
V495numeric6405 unique values
0 missing
V496numeric5619 unique values
0 missing
V497numeric6874 unique values
0 missing
V498numeric6075 unique values
0 missing
V499numeric5905 unique values
0 missing
V500numeric6288 unique values
0 missing
V501numeric6921 unique values
0 missing
V502numeric5786 unique values
0 missing
V503numeric9971 unique values
0 missing
V504numeric10032 unique values
0 missing
V505numeric10036 unique values
0 missing
V506numeric9955 unique values
0 missing
V507numeric9685 unique values
0 missing
V508numeric9971 unique values
0 missing
V509numeric7211 unique values
0 missing
V510numeric9872 unique values
0 missing
V511numeric5275 unique values
0 missing
V512numeric30 unique values
0 missing
V513numeric10248 unique values
0 missing
V514numeric10258 unique values
0 missing
V515numeric10201 unique values
0 missing
V516numeric9767 unique values
0 missing
V517numeric9733 unique values
0 missing
V518numeric9841 unique values
0 missing
V519numeric9624 unique values
0 missing
V520numeric9845 unique values
0 missing
V521numeric9767 unique values
0 missing
V522numeric6434 unique values
0 missing
V523numeric9797 unique values
0 missing
V524numeric4733 unique values
0 missing
V525numeric58 unique values
0 missing
V526numeric10258 unique values
0 missing
V527numeric10252 unique values
0 missing
V528numeric10221 unique values
0 missing
V529numeric10068 unique values
0 missing
V530numeric10082 unique values
0 missing
V531numeric10070 unique values
0 missing
V532numeric10089 unique values
0 missing
V533numeric9592 unique values
0 missing
V534numeric10068 unique values
0 missing
V535numeric7357 unique values
0 missing
V536numeric10010 unique values
0 missing
V537numeric5985 unique values
0 missing
V538numeric27 unique values
0 missing
V539numeric10238 unique values
0 missing
V540numeric10233 unique values
0 missing
V541numeric10224 unique values
0 missing
V542numeric9747 unique values
0 missing
V543numeric9716 unique values
0 missing
V544numeric9771 unique values
0 missing
V545numeric9667 unique values
0 missing
V546numeric9589 unique values
0 missing
V547numeric9747 unique values
0 missing
V548numeric6066 unique values
0 missing
V549numeric9752 unique values
0 missing
V550numeric5114 unique values
0 missing
V551numeric53 unique values
0 missing
V552numeric10240 unique values
0 missing
V553numeric10240 unique values
0 missing
V554numeric10226 unique values
0 missing
V555numeric10238 unique values
0 missing
V556numeric10250 unique values
0 missing
V557numeric10270 unique values
0 missing
V558numeric10270 unique values
0 missing
V559numeric10220 unique values
0 missing
V560numeric10195 unique values
0 missing
V561numeric10227 unique values
0 missing

107 properties

10299
Number of instances (rows) of the dataset.
562
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
561
Number of numeric attributes.
1
Number of nominal attributes.
0.96
Average class difference between consecutive instances.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.58
Entropy of the target attribute values.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.64
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
18.88
Percentage of instances belonging to the most frequent class.
1944
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
373.43
Maximum kurtosis among attributes of the numeric type.
0.83
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
6
The maximum number of distinct values among attributes of the nominal type.
14.03
Maximum skewness among attributes of the numeric type.
0.75
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
13.66
Mean kurtosis among attributes of the numeric type.
-0.51
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
6
Average number of distinct values among the attributes of the nominal type.
1.64
Mean skewness among attributes of the numeric type.
0.28
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
-0.98
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
6
The minimal number of distinct values among attributes of the nominal type.
-3.49
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
13.65
Percentage of instances belonging to the least frequent class.
1406
Number of instances belonging to the least frequent class.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
99.82
Percentage of numeric attributes.
0.18
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.27
First quartile of kurtosis among attributes of the numeric type.
-0.87
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.15
First quartile of skewness among attributes of the numeric type.
0.19
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
-0.66
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.87
Second quartile (Median) of skewness among attributes of the numeric type.
0.26
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
8.9
Third quartile of kurtosis among attributes of the numeric type.
-0.1
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.42
Third quartile of skewness among attributes of the numeric type.
0.36
Third quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.15
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.15
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.15
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.04
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task