Data
madelon

madelon

active ARFF Publicly available Visibility: public Uploaded 22-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_234 study_167 study_256 study_129 study_173 study_141 study_143 study_212
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Isabelle Guyon Source: UCI Please cite: Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, Gideon Dror, 2004. Result analysis of the NIPS 2003 feature selection challenge. Abstract: MADELON is an artificial dataset, which was part of the NIPS 2003 feature selection challenge. This is a two-class classification problem with continuous input variables. The difficulty is that the problem is multivariate and highly non-linear. Source: Isabelle Guyon Clopinet 955 Creston Road Berkeley, CA 90708 isabelle '@' clopinet.com Data Set Information: MADELON is an artificial dataset containing data points grouped in 32 clusters placed on the vertices of a five dimensional hypercube and randomly labeled +1 or -1. The five dimensions constitute 5 informative features. 15 linear combinations of those features were added to form a set of 20 (redundant) informative features. Based on those 20 features one must separate the examples into the 2 classes (corresponding to the +-1 labels). We added a number of distractor feature called 'probes' having no predictive power. The order of the features and patterns were randomized. This dataset is one of five datasets used in the NIPS 2003 feature selection challenge. Our website is still open for post-challenge submissions. All details about the preparation of the data are found in our technical report: Design of experiments for the NIPS 2003 variable selection benchmark, Isabelle Guyon, July 2003. Such information was made available only after the end of the challenge. The data are split into training, validation, and test set. Target values are provided only for the 2 first sets. Test set performance results are obtained by submitting prediction results to: [Web Link]. The data are in the following format: dataname.param: Parameters and statistics about the data dataname.feat: Identities of the features (in the order the features are found in the data). dataname_train.data: Training set (a space-delimited regular matrix, patterns in lines, features in columns). dataname_valid.data: Validation set. dataname_test.data: Test set. dataname_train.labels: Labels (truth values of the classes) for training examples. dataname_valid.labels: Validation set labels (withheld during the benchmark, but provided now). dataname_test.labels: Test set labels (withheld, so the data can still be use as a benchmark). Attribute Information: We do not provide attribute information, to avoid biasing the feature selection process. Relevant Papers: The best challenge entrants wrote papers collected in the book: Isabelle Guyon, Steve Gunn, Masoud Nikravesh, Lofti Zadeh (Eds.), Feature Extraction, Foundations and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer. See also: Isabelle Guyon, et al, 2007. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. Pattern Recognition Letters 28 (2007) 1438–1444. and the associated technical report: Isabelle Guyon, et al. 2006. Feature selection with the CLOP package. Technical Report.

501 features

Class (target)nominal2 unique values
0 missing
V1numeric40 unique values
0 missing
V2numeric176 unique values
0 missing
V3numeric215 unique values
0 missing
V4numeric60 unique values
0 missing
V5numeric230 unique values
0 missing
V6numeric45 unique values
0 missing
V7numeric220 unique values
0 missing
V8numeric12 unique values
0 missing
V9numeric98 unique values
0 missing
V10numeric49 unique values
0 missing
V11numeric202 unique values
0 missing
V12numeric163 unique values
0 missing
V13numeric191 unique values
0 missing
V14numeric235 unique values
0 missing
V15numeric78 unique values
0 missing
V16numeric134 unique values
0 missing
V17numeric84 unique values
0 missing
V18numeric170 unique values
0 missing
V19numeric135 unique values
0 missing
V20numeric68 unique values
0 missing
V21numeric82 unique values
0 missing
V22numeric131 unique values
0 missing
V23numeric45 unique values
0 missing
V24numeric66 unique values
0 missing
V25numeric235 unique values
0 missing
V26numeric167 unique values
0 missing
V27numeric131 unique values
0 missing
V28numeric76 unique values
0 missing
V29numeric75 unique values
0 missing
V30numeric137 unique values
0 missing
V31numeric53 unique values
0 missing
V32numeric202 unique values
0 missing
V33numeric199 unique values
0 missing
V34numeric221 unique values
0 missing
V35numeric145 unique values
0 missing
V36numeric231 unique values
0 missing
V37numeric74 unique values
0 missing
V38numeric143 unique values
0 missing
V39numeric32 unique values
0 missing
V40numeric12 unique values
0 missing
V41numeric25 unique values
0 missing
V42numeric220 unique values
0 missing
V43numeric135 unique values
0 missing
V44numeric101 unique values
0 missing
V45numeric167 unique values
0 missing
V46numeric141 unique values
0 missing
V47numeric201 unique values
0 missing
V48numeric191 unique values
0 missing
V49numeric202 unique values
0 missing
V50numeric151 unique values
0 missing
V51numeric240 unique values
0 missing
V52numeric203 unique values
0 missing
V53numeric131 unique values
0 missing
V54numeric36 unique values
0 missing
V55numeric165 unique values
0 missing
V56numeric124 unique values
0 missing
V57numeric225 unique values
0 missing
V58numeric200 unique values
0 missing
V59numeric228 unique values
0 missing
V60numeric125 unique values
0 missing
V61numeric119 unique values
0 missing
V62numeric44 unique values
0 missing
V63numeric210 unique values
0 missing
V64numeric45 unique values
0 missing
V65numeric422 unique values
0 missing
V66numeric207 unique values
0 missing
V67numeric202 unique values
0 missing
V68numeric131 unique values
0 missing
V69numeric37 unique values
0 missing
V70numeric48 unique values
0 missing
V71numeric238 unique values
0 missing
V72numeric92 unique values
0 missing
V73numeric141 unique values
0 missing
V74numeric208 unique values
0 missing
V75numeric48 unique values
0 missing
V76numeric225 unique values
0 missing
V77numeric66 unique values
0 missing
V78numeric150 unique values
0 missing
V79numeric209 unique values
0 missing
V80numeric119 unique values
0 missing
V81numeric145 unique values
0 missing
V82numeric230 unique values
0 missing
V83numeric170 unique values
0 missing
V84numeric84 unique values
0 missing
V85numeric222 unique values
0 missing
V86numeric180 unique values
0 missing
V87numeric36 unique values
0 missing
V88numeric124 unique values
0 missing
V89numeric45 unique values
0 missing
V90numeric233 unique values
0 missing
V91numeric5 unique values
0 missing
V92numeric190 unique values
0 missing
V93numeric129 unique values
0 missing
V94numeric115 unique values
0 missing
V95numeric52 unique values
0 missing
V96numeric187 unique values
0 missing
V97numeric25 unique values
0 missing
V98numeric136 unique values
0 missing
V99numeric119 unique values
0 missing
V100numeric200 unique values
0 missing
V101numeric60 unique values
0 missing
V102numeric61 unique values
0 missing
V103numeric45 unique values
0 missing
V104numeric91 unique values
0 missing
V105numeric202 unique values
0 missing
V106numeric585 unique values
0 missing
V107numeric162 unique values
0 missing
V108numeric183 unique values
0 missing
V109numeric184 unique values
0 missing
V110numeric68 unique values
0 missing
V111numeric182 unique values
0 missing
V112numeric236 unique values
0 missing
V113numeric52 unique values
0 missing
V114numeric145 unique values
0 missing
V115numeric209 unique values
0 missing
V116numeric104 unique values
0 missing
V117numeric123 unique values
0 missing
V118numeric78 unique values
0 missing
V119numeric160 unique values
0 missing
V120numeric141 unique values
0 missing
V121numeric16 unique values
0 missing
V122numeric137 unique values
0 missing
V123numeric70 unique values
0 missing
V124numeric217 unique values
0 missing
V125numeric132 unique values
0 missing
V126numeric191 unique values
0 missing
V127numeric81 unique values
0 missing
V128numeric141 unique values
0 missing
V129numeric71 unique values
0 missing
V130numeric213 unique values
0 missing
V131numeric165 unique values
0 missing
V132numeric125 unique values
0 missing
V133numeric130 unique values
0 missing
V134numeric29 unique values
0 missing
V135numeric150 unique values
0 missing
V136numeric230 unique values
0 missing
V137numeric226 unique values
0 missing
V138numeric114 unique values
0 missing
V139numeric45 unique values
0 missing
V140numeric96 unique values
0 missing
V141numeric131 unique values
0 missing
V142numeric220 unique values
0 missing
V143numeric74 unique values
0 missing
V144numeric60 unique values
0 missing
V145numeric114 unique values
0 missing
V146numeric130 unique values
0 missing
V147numeric28 unique values
0 missing
V148numeric196 unique values
0 missing
V149numeric34 unique values
0 missing
V150numeric219 unique values
0 missing
V151numeric224 unique values
0 missing
V152numeric80 unique values
0 missing
V153numeric70 unique values
0 missing
V154numeric412 unique values
0 missing
V155numeric10 unique values
0 missing
V156numeric151 unique values
0 missing
V157numeric126 unique values
0 missing
V158numeric139 unique values
0 missing
V159numeric155 unique values
0 missing
V160numeric153 unique values
0 missing
V161numeric150 unique values
0 missing
V162numeric72 unique values
0 missing
V163numeric73 unique values
0 missing
V164numeric43 unique values
0 missing
V165numeric223 unique values
0 missing
V166numeric144 unique values
0 missing
V167numeric12 unique values
0 missing
V168numeric28 unique values
0 missing
V169numeric9 unique values
0 missing
V170numeric236 unique values
0 missing
V171numeric240 unique values
0 missing
V172numeric223 unique values
0 missing
V173numeric206 unique values
0 missing
V174numeric9 unique values
0 missing
V175numeric96 unique values
0 missing
V176numeric216 unique values
0 missing
V177numeric84 unique values
0 missing
V178numeric48 unique values
0 missing
V179numeric213 unique values
0 missing
V180numeric222 unique values
0 missing
V181numeric204 unique values
0 missing
V182numeric218 unique values
0 missing
V183numeric153 unique values
0 missing
V184numeric135 unique values
0 missing
V185numeric93 unique values
0 missing
V186numeric144 unique values
0 missing
V187numeric223 unique values
0 missing
V188numeric164 unique values
0 missing
V189numeric232 unique values
0 missing
V190numeric32 unique values
0 missing
V191numeric145 unique values
0 missing
V192numeric150 unique values
0 missing
V193numeric117 unique values
0 missing
V194numeric237 unique values
0 missing
V195numeric233 unique values
0 missing
V196numeric61 unique values
0 missing
V197numeric39 unique values
0 missing
V198numeric60 unique values
0 missing
V199numeric10 unique values
0 missing
V200numeric175 unique values
0 missing
V201numeric130 unique values
0 missing
V202numeric125 unique values
0 missing
V203numeric120 unique values
0 missing
V204numeric228 unique values
0 missing
V205numeric202 unique values
0 missing
V206numeric11 unique values
0 missing
V207numeric215 unique values
0 missing
V208numeric29 unique values
0 missing
V209numeric99 unique values
0 missing
V210numeric121 unique values
0 missing
V211numeric87 unique values
0 missing
V212numeric228 unique values
0 missing
V213numeric142 unique values
0 missing
V214numeric205 unique values
0 missing
V215numeric76 unique values
0 missing
V216numeric222 unique values
0 missing
V217numeric194 unique values
0 missing
V218numeric66 unique values
0 missing
V219numeric160 unique values
0 missing
V220numeric68 unique values
0 missing
V221numeric168 unique values
0 missing
V222numeric229 unique values
0 missing
V223numeric166 unique values
0 missing
V224numeric211 unique values
0 missing
V225numeric208 unique values
0 missing
V226numeric165 unique values
0 missing
V227numeric116 unique values
0 missing
V228numeric15 unique values
0 missing
V229numeric7 unique values
0 missing
V230numeric119 unique values
0 missing
V231numeric93 unique values
0 missing
V232numeric119 unique values
0 missing
V233numeric85 unique values
0 missing
V234numeric115 unique values
0 missing
V235numeric126 unique values
0 missing
V236numeric129 unique values
0 missing
V237numeric75 unique values
0 missing
V238numeric22 unique values
0 missing
V239numeric123 unique values
0 missing
V240numeric40 unique values
0 missing
V241numeric167 unique values
0 missing
V242numeric247 unique values
0 missing
V243numeric163 unique values
0 missing
V244numeric91 unique values
0 missing
V245numeric208 unique values
0 missing
V246numeric198 unique values
0 missing
V247numeric206 unique values
0 missing
V248numeric24 unique values
0 missing
V249numeric54 unique values
0 missing
V250numeric160 unique values
0 missing
V251numeric178 unique values
0 missing
V252numeric169 unique values
0 missing
V253numeric28 unique values
0 missing
V254numeric193 unique values
0 missing
V255numeric53 unique values
0 missing
V256numeric176 unique values
0 missing
V257numeric227 unique values
0 missing
V258numeric232 unique values
0 missing
V259numeric64 unique values
0 missing
V260numeric75 unique values
0 missing
V261numeric100 unique values
0 missing
V262numeric42 unique values
0 missing
V263numeric111 unique values
0 missing
V264numeric200 unique values
0 missing
V265numeric59 unique values
0 missing
V266numeric126 unique values
0 missing
V267numeric226 unique values
0 missing
V268numeric93 unique values
0 missing
V269numeric163 unique values
0 missing
V270numeric118 unique values
0 missing
V271numeric87 unique values
0 missing
V272numeric227 unique values
0 missing
V273numeric237 unique values
0 missing
V274numeric224 unique values
0 missing
V275numeric96 unique values
0 missing
V276numeric74 unique values
0 missing
V277numeric5 unique values
0 missing
V278numeric186 unique values
0 missing
V279numeric129 unique values
0 missing
V280numeric173 unique values
0 missing
V281numeric10 unique values
0 missing
V282numeric227 unique values
0 missing
V283numeric102 unique values
0 missing
V284numeric10 unique values
0 missing
V285numeric187 unique values
0 missing
V286numeric177 unique values
0 missing
V287numeric171 unique values
0 missing
V288numeric223 unique values
0 missing
V289numeric31 unique values
0 missing
V290numeric118 unique values
0 missing
V291numeric170 unique values
0 missing
V292numeric170 unique values
0 missing
V293numeric135 unique values
0 missing
V294numeric43 unique values
0 missing
V295numeric225 unique values
0 missing
V296numeric191 unique values
0 missing
V297numeric152 unique values
0 missing
V298numeric188 unique values
0 missing
V299numeric142 unique values
0 missing
V300numeric128 unique values
0 missing
V301numeric194 unique values
0 missing
V302numeric91 unique values
0 missing
V303numeric31 unique values
0 missing
V304numeric141 unique values
0 missing
V305numeric193 unique values
0 missing
V306numeric169 unique values
0 missing
V307numeric84 unique values
0 missing
V308numeric60 unique values
0 missing
V309numeric169 unique values
0 missing
V310numeric134 unique values
0 missing
V311numeric158 unique values
0 missing
V312numeric106 unique values
0 missing
V313numeric184 unique values
0 missing
V314numeric167 unique values
0 missing
V315numeric68 unique values
0 missing
V316numeric180 unique values
0 missing
V317numeric63 unique values
0 missing
V318numeric48 unique values
0 missing
V319numeric218 unique values
0 missing
V320numeric243 unique values
0 missing
V321numeric79 unique values
0 missing
V322numeric166 unique values
0 missing
V323numeric117 unique values
0 missing
V324numeric77 unique values
0 missing
V325numeric115 unique values
0 missing
V326numeric38 unique values
0 missing
V327numeric141 unique values
0 missing
V328numeric159 unique values
0 missing
V329numeric79 unique values
0 missing
V330numeric215 unique values
0 missing
V331numeric187 unique values
0 missing
V332numeric79 unique values
0 missing
V333numeric8 unique values
0 missing
V334numeric180 unique values
0 missing
V335numeric204 unique values
0 missing
V336numeric81 unique values
0 missing
V337numeric478 unique values
0 missing
V338numeric195 unique values
0 missing
V339numeric442 unique values
0 missing
V340numeric212 unique values
0 missing
V341numeric216 unique values
0 missing
V342numeric141 unique values
0 missing
V343numeric175 unique values
0 missing
V344numeric182 unique values
0 missing
V345numeric238 unique values
0 missing
V346numeric57 unique values
0 missing
V347numeric50 unique values
0 missing
V348numeric235 unique values
0 missing
V349numeric130 unique values
0 missing
V350numeric188 unique values
0 missing
V351numeric50 unique values
0 missing
V352numeric219 unique values
0 missing
V353numeric203 unique values
0 missing
V354numeric78 unique values
0 missing
V355numeric115 unique values
0 missing
V356numeric103 unique values
0 missing
V357numeric225 unique values
0 missing
V358numeric12 unique values
0 missing
V359numeric203 unique values
0 missing
V360numeric223 unique values
0 missing
V361numeric179 unique values
0 missing
V362numeric122 unique values
0 missing
V363numeric231 unique values
0 missing
V364numeric140 unique values
0 missing
V365numeric37 unique values
0 missing
V366numeric227 unique values
0 missing
V367numeric152 unique values
0 missing
V368numeric78 unique values
0 missing
V369numeric81 unique values
0 missing
V370numeric215 unique values
0 missing
V371numeric191 unique values
0 missing
V372numeric226 unique values
0 missing
V373numeric130 unique values
0 missing
V374numeric145 unique values
0 missing
V375numeric164 unique values
0 missing
V376numeric160 unique values
0 missing
V377numeric50 unique values
0 missing
V378numeric123 unique values
0 missing
V379numeric266 unique values
0 missing
V380numeric185 unique values
0 missing
V381numeric38 unique values
0 missing
V382numeric129 unique values
0 missing
V383numeric198 unique values
0 missing
V384numeric86 unique values
0 missing
V385numeric103 unique values
0 missing
V386numeric72 unique values
0 missing
V387numeric157 unique values
0 missing
V388numeric15 unique values
0 missing
V389numeric116 unique values
0 missing
V390numeric211 unique values
0 missing
V391numeric33 unique values
0 missing
V392numeric211 unique values
0 missing
V393numeric20 unique values
0 missing
V394numeric190 unique values
0 missing
V395numeric22 unique values
0 missing
V396numeric122 unique values
0 missing
V397numeric64 unique values
0 missing
V398numeric219 unique values
0 missing
V399numeric210 unique values
0 missing
V400numeric43 unique values
0 missing
V401numeric30 unique values
0 missing
V402numeric184 unique values
0 missing
V403numeric10 unique values
0 missing
V404numeric166 unique values
0 missing
V405numeric6 unique values
0 missing
V406numeric191 unique values
0 missing
V407numeric204 unique values
0 missing
V408numeric31 unique values
0 missing
V409numeric164 unique values
0 missing
V410numeric48 unique values
0 missing
V411numeric119 unique values
0 missing
V412numeric226 unique values
0 missing
V413numeric172 unique values
0 missing
V414numeric107 unique values
0 missing
V415numeric187 unique values
0 missing
V416numeric238 unique values
0 missing
V417numeric77 unique values
0 missing
V418numeric212 unique values
0 missing
V419numeric231 unique values
0 missing
V420numeric197 unique values
0 missing
V421numeric40 unique values
0 missing
V422numeric85 unique values
0 missing
V423numeric76 unique values
0 missing
V424numeric5 unique values
0 missing
V425numeric75 unique values
0 missing
V426numeric89 unique values
0 missing
V427numeric114 unique values
0 missing
V428numeric209 unique values
0 missing
V429numeric203 unique values
0 missing
V430numeric32 unique values
0 missing
V431numeric132 unique values
0 missing
V432numeric178 unique values
0 missing
V433numeric164 unique values
0 missing
V434numeric300 unique values
0 missing
V435numeric124 unique values
0 missing
V436numeric214 unique values
0 missing
V437numeric75 unique values
0 missing
V438numeric226 unique values
0 missing
V439numeric187 unique values
0 missing
V440numeric68 unique values
0 missing
V441numeric220 unique values
0 missing
V442numeric106 unique values
0 missing
V443numeric450 unique values
0 missing
V444numeric241 unique values
0 missing
V445numeric118 unique values
0 missing
V446numeric12 unique values
0 missing
V447numeric76 unique values
0 missing
V448numeric72 unique values
0 missing
V449numeric231 unique values
0 missing
V450numeric69 unique values
0 missing
V451numeric97 unique values
0 missing
V452numeric52 unique values
0 missing
V453numeric114 unique values
0 missing
V454numeric512 unique values
0 missing
V455numeric42 unique values
0 missing
V456numeric341 unique values
0 missing
V457numeric40 unique values
0 missing
V458numeric175 unique values
0 missing
V459numeric241 unique values
0 missing
V460numeric183 unique values
0 missing
V461numeric194 unique values
0 missing
V462numeric137 unique values
0 missing
V463numeric187 unique values
0 missing
V464numeric239 unique values
0 missing
V465numeric109 unique values
0 missing
V466numeric118 unique values
0 missing
V467numeric56 unique values
0 missing
V468numeric191 unique values
0 missing
V469numeric118 unique values
0 missing
V470numeric221 unique values
0 missing
V471numeric221 unique values
0 missing
V472numeric30 unique values
0 missing
V473numeric224 unique values
0 missing
V474numeric13 unique values
0 missing
V475numeric44 unique values
0 missing
V476numeric332 unique values
0 missing
V477numeric100 unique values
0 missing
V478numeric103 unique values
0 missing
V479numeric207 unique values
0 missing
V480numeric76 unique values
0 missing
V481numeric120 unique values
0 missing
V482numeric159 unique values
0 missing
V483numeric64 unique values
0 missing
V484numeric199 unique values
0 missing
V485numeric196 unique values
0 missing
V486numeric76 unique values
0 missing
V487numeric63 unique values
0 missing
V488numeric200 unique values
0 missing
V489numeric138 unique values
0 missing
V490numeric61 unique values
0 missing
V491numeric122 unique values
0 missing
V492numeric30 unique values
0 missing
V493numeric139 unique values
0 missing
V494numeric560 unique values
0 missing
V495numeric199 unique values
0 missing
V496numeric206 unique values
0 missing
V497numeric42 unique values
0 missing
V498numeric86 unique values
0 missing
V499numeric204 unique values
0 missing
V500numeric155 unique values
0 missing

107 properties

2600
Number of instances (rows) of the dataset.
501
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
500
Number of numeric attributes.
1
Number of nominal attributes.
0.51
Average class difference between consecutive instances.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.29
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.29
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.29
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Entropy of the target attribute values.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.38
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.23
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.19
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
50
Percentage of instances belonging to the most frequent class.
1300
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
0.57
Maximum kurtosis among attributes of the numeric type.
517.75
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
0.17
Maximum skewness among attributes of the numeric type.
133.64
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.08
Mean kurtosis among attributes of the numeric type.
488.06
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
0.03
Mean skewness among attributes of the numeric type.
24.75
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.96
Minimum kurtosis among attributes of the numeric type.
475.78
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.12
Minimum skewness among attributes of the numeric type.
0.6
Minimum standard deviation of attributes of the numeric type.
50
Percentage of instances belonging to the least frequent class.
1300
Number of instances belonging to the least frequent class.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.41
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
0.2
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
99.8
Percentage of numeric attributes.
0.2
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.03
First quartile of kurtosis among attributes of the numeric type.
480.05
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0
First quartile of skewness among attributes of the numeric type.
11.66
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.1
Second quartile (Median) of kurtosis among attributes of the numeric type.
485.01
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.03
Second quartile (Median) of skewness among attributes of the numeric type.
23.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.18
Third quartile of kurtosis among attributes of the numeric type.
494.39
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.07
Third quartile of skewness among attributes of the numeric type.
35.62
Third quartile of standard deviation of attributes of the numeric type.
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.49
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.46
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task