Data
one-hundred-plants-shape

one-hundred-plants-shape

active ARFF Publicly available Visibility: public Uploaded 25-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_212 study_234 study_2 study_169 study_105
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: James Cope, Thibaut Beghin, Paolo Remagnino, Sarah Barman. Source: UCI Please cite: Charles Mallah, James Cope, James Orwell. Plant Leaf Classification Using Probabilistic Integration of Shape, Texture and Margin Features. Signal Processing, Pattern Recognition and Applications, in press. 2013. 1. One-hundred plant species leaves data set (class = shape). 2. Sources: (a) Original owners of colour Leaves Samples: James Cope, Thibaut Beghin, Paolo Remagnino, Sarah Barman. The colour images are not included in this submission. The Leaves were collected in the Royal Botanic Gardens, Kew, UK. email: james.cope@kingston.ac.uk (b) This dataset consists of work carried out by James Cope, Charles Mallah, and James Orwell. Donor of database Charles Mallah: charles.mallah@kingston.ac.uk; James Cope: james.cope@kingston.ac.uk (c) Date received 03/12/2012 3. Past Usage: (a) This is a new data set, provisional paper: Charles Mallah, James Cope, James Orwell. Plant Leaf Classification Using Probabilistic Integration of Shape, Texture and Margin Features. Signal Processing, Pattern Recognition and Applications, in press. (b) Previous parts of the data set relate to feature extraction of leaves from: J. Cope, P. Remagnino, S. Barman, and P. Wilkin. Plant texture classification using gabor cooccurrences. Advances in Visual Computing, pages 669ñ677, 2010. T. Beghin, J. Cope, P. Remagnino, and S. Barman. Shape and texture based plant leaf classification. In Advanced Concepts for Intelligent Vision Systems, pages 345ñ353. Springer, 2010. 4. Relevant Information Paragraph: The data directory contains the binary images (masks) of the leaf samples. The colour images are not included. The data set features are organised as the following: * [THIS DATASET]'data_Sha_64.txt' * 'data_Tex_64.txt' * 'data_Mar_64.txt' One file for each 64-element feature vectors. Each row begins with the class label. The remaining 64 elements is the feature vector. 5. Number of Instances 1600 samples each of three features (16 samples per leaf class). 6. Number of Attributes Three 64 element feature vectors per sample. 7. Vectors There are three features: Shape, Margin and Texture. As discussed in the paper(s) above. For Each feature, a 64 element vector is given per sample of leaf. These vectors are taken as a contigous descriptors (for shape) or histograms (for texture and margin). 8. Missing Attribute Values: none 9. Class Distribution: 16 instances per class

65 features

Class (target)nominal100 unique values
0 missing
V48numeric783 unique values
0 missing
V34numeric801 unique values
0 missing
V47numeric761 unique values
0 missing
V46numeric763 unique values
0 missing
V45numeric758 unique values
0 missing
V44numeric743 unique values
0 missing
V43numeric741 unique values
0 missing
V42numeric730 unique values
0 missing
V41numeric720 unique values
0 missing
V40numeric697 unique values
0 missing
V39numeric718 unique values
0 missing
V38numeric739 unique values
0 missing
V37numeric762 unique values
0 missing
V36numeric766 unique values
0 missing
V35numeric791 unique values
0 missing
V33numeric824 unique values
0 missing
V49numeric769 unique values
0 missing
V50numeric786 unique values
0 missing
V51numeric766 unique values
0 missing
V52numeric749 unique values
0 missing
V53numeric739 unique values
0 missing
V54numeric737 unique values
0 missing
V55numeric723 unique values
0 missing
V56numeric731 unique values
0 missing
V57numeric724 unique values
0 missing
V58numeric748 unique values
0 missing
V59numeric749 unique values
0 missing
V60numeric766 unique values
0 missing
V61numeric754 unique values
0 missing
V62numeric766 unique values
0 missing
V63numeric785 unique values
0 missing
V64numeric804 unique values
0 missing
V17numeric770 unique values
0 missing
V2numeric801 unique values
0 missing
V3numeric774 unique values
0 missing
V4numeric777 unique values
0 missing
V5numeric754 unique values
0 missing
V6numeric735 unique values
0 missing
V7numeric719 unique values
0 missing
V8numeric729 unique values
0 missing
V9numeric715 unique values
0 missing
V10numeric739 unique values
0 missing
V11numeric729 unique values
0 missing
V12numeric756 unique values
0 missing
V13numeric738 unique values
0 missing
V14numeric769 unique values
0 missing
V15numeric767 unique values
0 missing
V16numeric771 unique values
0 missing
V1numeric788 unique values
0 missing
V18numeric769 unique values
0 missing
V19numeric761 unique values
0 missing
V20numeric758 unique values
0 missing
V21numeric752 unique values
0 missing
V22numeric751 unique values
0 missing
V23numeric731 unique values
0 missing
V24numeric742 unique values
0 missing
V25numeric730 unique values
0 missing
V26numeric733 unique values
0 missing
V27numeric736 unique values
0 missing
V28numeric762 unique values
0 missing
V29numeric770 unique values
0 missing
V30numeric783 unique values
0 missing
V31numeric797 unique values
0 missing
V32numeric813 unique values
0 missing

107 properties

1600
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
100
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
0.94
Average class difference between consecutive instances.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
6.64
Entropy of the target attribute values.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.98
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.04
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.6
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.6
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.6
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1
Percentage of instances belonging to the most frequent class.
16
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.41
Maximum kurtosis among attributes of the numeric type.
0
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
100
The maximum number of distinct values among attributes of the nominal type.
2.31
Maximum skewness among attributes of the numeric type.
0
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.8
Mean kurtosis among attributes of the numeric type.
0
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
100
Average number of distinct values among the attributes of the nominal type.
1.39
Mean skewness among attributes of the numeric type.
0
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.12
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
100
The minimal number of distinct values among attributes of the nominal type.
0.29
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
1
Percentage of instances belonging to the least frequent class.
16
Number of instances belonging to the least frequent class.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.48
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.51
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.46
Percentage of numeric attributes.
1.54
Percentage of nominal attributes.
First quartile of entropy among attributes.
1.17
First quartile of kurtosis among attributes of the numeric type.
0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.62
First quartile of skewness among attributes of the numeric type.
0
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
4.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.71
Second quartile (Median) of skewness among attributes of the numeric type.
0
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.53
Third quartile of kurtosis among attributes of the numeric type.
0
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.01
Third quartile of skewness among attributes of the numeric type.
0
Third quartile of standard deviation of attributes of the numeric type.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.68
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.68
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.68
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.63
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.37
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.63
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.37
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.63
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.37
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.4
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task