Data
adult

adult

active ARFF Publicly available Visibility: public Uploaded 09-06-2015 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1629 study_4332 study_12587 study_12756 study_658 study_6561 study_12466 study_13369 study_1276 study_1981 study_2018 study_3920 study_4992 study_7118 study_12587 study_734 study_1183 study_2018 study_4146 study_4693 study_11266 study_13073 study_2751 study_3344 study_4655 study_6396 study_7415 study_10965 study_1125 study_12660 study_12756 study_153 study_3811 study_4677 study_5093 study_11808 study_12831 study_13042 study_2907 study_4910 study_7540 study_7452 study_11825 study_2964 study_4146 study_6599 study_6668 study_6980 study_7294 study_11370 study_638 study_2637 study_3178 study_6861 study_10375 study_11643 study_4948 study_843 study_1545 study_2640 study_3901 study_3941 study_6304 study_7635 study_10931 study_11863 study_13282
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Ronny Kohavi and Barry Becker Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Adult) - 1996-05-01 Please cite: Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996 Note: this is the original version from the UCI repository, with training and test sets merged. Prediction task is to determine whether a person makes over 50K a year. Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0)) Ronny Kohavi and Barry Becker. Data Mining and Visualization, Silicon Graphics. e-mail: ronnyk '@' live.com for questions.

15 features

class (target)nominal2 unique values
0 missing
agenumeric74 unique values
0 missing
workclassnominal8 unique values
2799 missing
fnlwgtnumeric28523 unique values
0 missing
educationnominal16 unique values
0 missing
education-numnumeric16 unique values
0 missing
marital-statusnominal7 unique values
0 missing
occupationnominal14 unique values
2809 missing
relationshipnominal6 unique values
0 missing
racenominal5 unique values
0 missing
sexnominal2 unique values
0 missing
capital-gainnumeric123 unique values
0 missing
capital-lossnumeric99 unique values
0 missing
hours-per-weeknumeric96 unique values
0 missing
native-countrynominal41 unique values
857 missing

107 properties

48842
Number of instances (rows) of the dataset.
15
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
6465
Number of missing values in the dataset.
3620
Number of instances with at least one value missing.
6
Number of numeric attributes.
9
Number of nominal attributes.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
23.83
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
12.15
Standard deviation of the number of distinct values among attributes of the nominal type.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
11.22
Average number of distinct values among the attributes of the nominal type.
0.1
First quartile of skewness among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.06
Mean skewness among attributes of the numeric type.
9.94
First quartile of standard deviation of attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
76.07
Percentage of instances belonging to the most frequent class.
18914.62
Mean standard deviation of attributes of the numeric type.
1.6
Second quartile (Median) of entropy among attributes.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.79
Entropy of the target attribute values.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
37155
Number of instances belonging to the most frequent class.
0.8
Minimal entropy among attributes.
4.5
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.44
Maximum entropy among attributes.
-0.18
Minimum kurtosis among attributes of the numeric type.
63.96
Second quartile (Median) of means among attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.24
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
152.69
Maximum kurtosis among attributes of the numeric type.
10.08
Minimum of means among attributes of the numeric type.
0.06
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
189664.13
Maximum of means among attributes of the numeric type.
0.01
Minimal mutual information between the nominal attributes and the target attribute.
1
Second quartile (Median) of skewness among attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.17
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
13.33
Percentage of binary attributes.
208.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
2.74
Third quartile of entropy among attributes.
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
11.07
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
41
The maximum number of distinct values among attributes of the nominal type.
-0.32
Minimum skewness among attributes of the numeric type.
7.41
Percentage of instances having missing values.
53.18
Third quartile of kurtosis among attributes of the numeric type.
0.63
Average class difference between consecutive instances.
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
11.89
Maximum skewness among attributes of the numeric type.
2.57
Minimum standard deviation of attributes of the numeric type.
0.88
Percentage of missing values.
48225.33
Third quartile of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
105604.03
Maximum standard deviation of attributes of the numeric type.
23.93
Percentage of instances belonging to the least frequent class.
40
Percentage of numeric attributes.
0.14
Third quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.78
Average entropy of the attributes.
11687
Number of instances belonging to the least frequent class.
60
Percentage of nominal attributes.
6.4
Third quartile of skewness among attributes of the numeric type.
0.56
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
30.36
Mean kurtosis among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.83
First quartile of entropy among attributes.
31990.02
Third quartile of standard deviation of attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
31819.97
Mean of means among attributes of the numeric type.
0.17
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.42
First quartile of kurtosis among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.14
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Average mutual information between the nominal attributes and the target attribute.
0.49
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
31.5
First quartile of means among attributes of the numeric type.

12 tasks

10 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
Define a new task