Data
cylinder-bands

cylinder-bands

active ARFF Publicly available Visibility: public Uploaded 30-03-2016 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_1651 study_12570 study_402 study_734 study_6188 study_6396 study_7432 study_10740 study_2479 study_4248 study_4396 study_10252 study_11552 study_11606 study_308 study_422 study_3462 study_4332 study_11009 study_13152 study_340 study_1419 study_2728 study_6071 study_11460 study_12397 study_13073 study_1011 study_1396 study_3218 study_4146 study_5035 study_11388 study_666 study_2771 study_6901 study_7381 study_12978 study_422 study_1629 study_10175 study_10930 study_2599 study_3442 study_3838 study_4733 study_4812 study_6622 study_10252 study_10754 study_11643 study_422 study_1299 study_3524 study_10272 study_10607 study_11009 study_11029 study_12080 study_12392 study_267 study_426 study_1082 study_1783 study_1824 study_2795 study_3135 study_6536 study_6646 study_12143
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Bob Evans, RR Donnelley & Sons Co. Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Cylinder+Bands) - August, 1995 Please cite: Cylinder bands Process delays known as cylinder banding in rotogravure printing were substantially mitigated using control rules discovered by decision tree induction. Attribute Information: > 1. timestamp: numeric;19500101 - 21001231 2. cylinder number: nominal 3. customer: nominal; 4. job number: nominal; 5. grain screened: nominal; yes, no 6. ink color: nominal; key, type 7. proof on ctd ink: nominal; yes, no 8. blade mfg: nominal; benton, daetwyler, uddeholm 9. cylinder division: nominal; gallatin, warsaw, mattoon 10. paper type: nominal; uncoated, coated, super 11. ink type: nominal; uncoated, coated, cover 12. direct steam: nominal; use; yes, no * 13. solvent type: nominal; xylol, lactol, naptha, line, other 14. type on cylinder: nominal; yes, no 15. press type: nominal; use; 70 wood hoe, 70 motter, 70 albert, 94 motter 16. press: nominal; 821, 802, 813, 824, 815, 816, 827, 828 17. unit number: nominal; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 18. cylinder size: nominal; catalog, spiegel, tabloid 19. paper mill location: nominal; north us, south us, canadian, scandanavian, mid european 20. plating tank: nominal; 1910, 1911, other 21. proof cut: numeric; 0-100 22. viscosity: numeric; 0-100 23. caliper: numeric; 0-1.0 24. ink temperature: numeric; 5-30 25. humifity: numeric; 5-120 26. roughness: numeric; 0-2 27. blade pressure: numeric; 10-75 28. varnish pct: numeric; 0-100 29. press speed: numeric; 0-4000 30. ink pct: numeric; 0-100 31. solvent pct: numeric; 0-100 32. ESA Voltage: numeric; 0-16 33. ESA Amperage: numeric; 0-10 34. wax: numeric ; 0-4.0 35. hardener: numeric; 0-3.0 36. roller durometer: numeric; 15-120 37. current density: numeric; 20-50 38. anode space ratio: numeric; 70-130 39. chrome content: numeric; 80-120 40. band type: nominal; class; band, no band Notes: * cylinder number is an identifier and should be ignored when modelling the data

38 features

band_type (target)nominal2 unique values
0 missing
timestamp (ignore)nominal296 unique values
0 missing
cylinder_number (ignore)nominal429 unique values
0 missing
customernominal71 unique values
0 missing
job_numbernumeric262 unique values
0 missing
grain_screenednominal2 unique values
49 missing
ink_colornominal1 unique values
0 missing
proof_on_ctd_inknominal2 unique values
57 missing
blade_mfgnominal2 unique values
60 missing
cylinder_divisionnominal1 unique values
0 missing
paper_typenominal3 unique values
0 missing
ink_typenominal3 unique values
0 missing
direct_steamnominal2 unique values
25 missing
solvent_typenominal3 unique values
55 missing
type_on_cylindernominal2 unique values
18 missing
press_typenominal4 unique values
0 missing
pressnominal8 unique values
0 missing
unit_numbernumeric7 unique values
0 missing
cylinder_sizenominal3 unique values
3 missing
paper_mill_locationnominal5 unique values
156 missing
plating_tanknominal2 unique values
18 missing
proof_cutnumeric27 unique values
55 missing
viscositynumeric37 unique values
5 missing
calipernominal20 unique values
27 missing
ink_temperaturenumeric65 unique values
2 missing
humifitynumeric42 unique values
1 missing
roughnessnumeric18 unique values
30 missing
blade_pressurenumeric36 unique values
63 missing
varnish_pctnumeric122 unique values
56 missing
press_speednumeric83 unique values
10 missing
ink_pctnumeric81 unique values
56 missing
solvent_pctnumeric115 unique values
56 missing
ESA_Voltagenumeric17 unique values
57 missing
ESA_Amperagenumeric4 unique values
55 missing
waxnumeric30 unique values
6 missing
hardenernumeric29 unique values
7 missing
roller_durometernumeric12 unique values
55 missing
current_densitynominal7 unique values
7 missing
anode_space_rationumeric80 unique values
7 missing
chrome_contentnominal3 unique values
3 missing

107 properties

540
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
999
Number of missing values in the dataset.
263
Number of instances with at least one value missing.
18
Number of numeric attributes.
20
Number of nominal attributes.
0.05
Average mutual information between the nominal attributes and the target attribute.
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.13
First quartile of means among attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.38
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.41
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
22.58
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4
Number of binary attributes.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.41
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
7.3
Average number of distinct values among the attributes of the nominal type.
-0.18
First quartile of skewness among attributes of the numeric type.
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
15.57
Standard deviation of the number of distinct values among attributes of the nominal type.
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.19
Mean skewness among attributes of the numeric type.
1.1
First quartile of standard deviation of attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.38
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
506.96
Mean standard deviation of attributes of the numeric type.
1.13
Second quartile (Median) of entropy among attributes.
0.41
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.32
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
57.78
Percentage of instances belonging to the most frequent class.
0
Minimal entropy among attributes.
1.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.98
Entropy of the target attribute values.
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
312
Number of instances belonging to the most frequent class.
-1.75
Minimum kurtosis among attributes of the numeric type.
32.84
Second quartile (Median) of means among attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
4.99
Maximum entropy among attributes.
0.04
Minimum of means among attributes of the numeric type.
0.05
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.41
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.32
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
137.58
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
0.42
Second quartile (Median) of skewness among attributes of the numeric type.
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.26
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
37287.53
Maximum of means among attributes of the numeric type.
0.22
Maximum mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
10.53
Percentage of binary attributes.
4.76
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.07
Number of attributes divided by the number of instances.
71
The maximum number of distinct values among attributes of the nominal type.
-1.95
Minimum skewness among attributes of the numeric type.
48.7
Percentage of instances having missing values.
1.39
Third quartile of entropy among attributes.
0.41
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
17.87
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
11.53
Maximum skewness among attributes of the numeric type.
0.19
Minimum standard deviation of attributes of the numeric type.
4.87
Percentage of missing values.
5.48
Third quartile of kurtosis among attributes of the numeric type.
0.81
Average class difference between consecutive instances.
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
8729
Maximum standard deviation of attributes of the numeric type.
42.22
Percentage of instances belonging to the least frequent class.
47.37
Percentage of numeric attributes.
61.37
Third quartile of means among attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.3
Average entropy of the attributes.
228
Number of instances belonging to the least frequent class.
52.63
Percentage of nominal attributes.
0.09
Third quartile of mutual information between the nominal attributes and the target attribute.
0.38
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.41
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
10.37
Mean kurtosis among attributes of the numeric type.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.36
First quartile of entropy among attributes.
1.31
Third quartile of skewness among attributes of the numeric type.
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2198.88
Mean of means among attributes of the numeric type.
0.33
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.38
First quartile of kurtosis among attributes of the numeric type.
8.3
Third quartile of standard deviation of attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.38
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001

11 tasks

10 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: band_type
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: band_type
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: band_type
0 runs - estimation_procedure: Leave one out - target_feature: band_type
0 runs - estimation_procedure: Test on Training Data - target_feature: band_type
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: band_type
0 runs - estimation_procedure: 33% Holdout set - target_feature: band_type
0 runs - estimation_procedure: 10% Holdout set - target_feature: band_type
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: band_type
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: band_type
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: band_type
Define a new task