Data
LED-display-domain-7digit

LED-display-domain-7digit

active ARFF Publicly available Visibility: public Uploaded 29-07-2016 by Rafael G. Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2887 study_6824 study_7346 study_8366 study_12357 study_340 study_1125 study_1256 study_1893 study_2567 study_7277 study_8366 study_4222 study_8366 study_10340 study_11684 study_266 study_504 study_1256 study_1524 study_8366 study_11684 study_360 study_3007 study_3419 study_3462 study_3811 study_8366 study_11460 study_11845 study_3051 study_6599 study_8366 study_10848 study_13008 study_1876 study_4753 study_7081 study_11660 study_12978 study_1609 study_2144 study_2308 study_3858 study_6515 study_12357 study_12570 study_1738 study_3051 study_3133 study_3419 study_3900 study_6997 study_7277 study_10340 study_13042 study_77 study_754 study_4108 study_7152 study_668 study_705 study_4693 study_10754 study_11370 study_11623 study_755 study_928 study_948 study_1303 study_4694 study_7399 study_7416 study_10655 study_10741 study_10893 study_12720
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
1. Title of Database: LED display domain 2. Sources: (a) Breiman,L., Friedman,J.H., Olshen,R.A., & Stone,C.J. (1984). Classification and Regression Trees. Wadsworth International Group: Belmont, California. (see pages 43-49). (b) Donor: David Aha (c) Date: 11/10/1988 3. Past Usage: (many) 1. CART book (above): -- Optimal Bayes classification rate: 74% -- CART decision tree algorithm: 71% (resubstitution estimate) -- Nearest Neighbor Algorithm: 71% -- 200 training and 5000 test instances 2. Quinlan,J.R. (1987). Simplifying Decision Trees. In International Journal of Man-Machine Studies (to appear). -- C4 decision tree algorithm: 72.6% (using pessimistic pruning) -- 2000 training and 500 test instances 3. Tan,M. & Eshelman,L. (1988). Using Weighted Networks to Represent Classification Knowledge in Noisy Domains. In Proceedings of the 5th International Conference on Machine Learning, 121-134, Ann Arbor, Michigan: Morgan Kaufmann. -- IWN system: 73.3% (using the And-OR classification algorithm) -- 400 training and 500 test cases 4. Relevant Information Paragraph: This simple domain contains 7 Boolean attributes and 10 concepts, the set of decimal digits. Recall that LED displays contain 7 light-emitting diodes -- hence the reason for 7 attributes. The problem would be easy if not for the introduction of noise. In this case, each attribute value has the 10% probability of having its value inverted. It's valuable to know the optimal Bayes rate for these databases. In this case, the misclassification rate is 26% (74% classification accuracy). 5. Number of Instances: 500. But in the original URL you can find a C script and run it choosing the number of instances to be generated. 6. Number of Attributes: 7 (all Boolean-valued) 7. Attribute Information: -- All attribute values are either 0 or 1, according to whether the corresponding light is on or not for the decimal digit. -- Each attribute (excluding the class attribute, which is an integer ranging between 0 and 9 inclusive) has a 10% percent chance of being inverted. 8. Missing Attribute Values: None 9. Class Distribution: 10% (Theoretical) -- Each concept (digit) has the same theoretical probability distribution. The program randomly selects the attribute.

8 features

Class (target)nominal10 unique values
0 missing
V1numeric2 unique values
0 missing
V2numeric2 unique values
0 missing
V3numeric2 unique values
0 missing
V4numeric2 unique values
0 missing
V5numeric2 unique values
0 missing
V6numeric2 unique values
0 missing
V7numeric2 unique values
0 missing

107 properties

500
Number of instances (rows) of the dataset.
8
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
7
Number of numeric attributes.
1
Number of nominal attributes.
-1.12
Mean kurtosis among attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
-0.37
Third quartile of skewness among attributes of the numeric type.
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.66
Mean of means among attributes of the numeric type.
0.3
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.83
First quartile of kurtosis among attributes of the numeric type.
0.49
Third quartile of standard deviation of attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.59
First quartile of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.31
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
10
Average number of distinct values among the attributes of the nominal type.
-1.06
First quartile of skewness among attributes of the numeric type.
0.66
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
-0.73
Mean skewness among attributes of the numeric type.
0.44
First quartile of standard deviation of attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.31
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.46
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.3
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
11.4
Percentage of instances belonging to the most frequent class.
57
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.48
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.66
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
3.31
Entropy of the target attribute values.
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Maximum entropy among attributes.
-1.87
Minimum kurtosis among attributes of the numeric type.
0.67
Second quartile (Median) of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.74
Maximum kurtosis among attributes of the numeric type.
0.4
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.8
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.82
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.73
Second quartile (Median) of skewness among attributes of the numeric type.
0.66
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
10
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Number of attributes divided by the number of instances.
10
The maximum number of distinct values among attributes of the nominal type.
-1.65
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.43
Maximum skewness among attributes of the numeric type.
0.39
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-0.87
Third quartile of kurtosis among attributes of the numeric type.
0.72
Average class difference between consecutive instances.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.49
Maximum standard deviation of attributes of the numeric type.
7.4
Percentage of instances belonging to the least frequent class.
87.5
Percentage of numeric attributes.
0.73
Third quartile of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
37
Number of instances belonging to the least frequent class.
12.5
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001

11 tasks

12 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Test on Training Data - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: Leave one out - target_feature: Class
0 runs - estimation_procedure: 10% Holdout set - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
Define a new task