Flow
TEST5959bf4b23sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)

TEST5959bf4b23sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)

Visibility: public Uploaded 18-10-2024 by Continuous Integration sklearn==1.0.2 numpy>=1.14.6 scipy>=1.1.0 joblib>=0.11 threadpoolctl>=2.0.0 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_1.0.2
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.

Parameters

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table