Flow
TESTb2f5bf7326sklearn.ensemble._voting.VotingClassifier(dt=sklearn.tree._classes.DecisionTreeClassifier)

TESTb2f5bf7326sklearn.ensemble._voting.VotingClassifier(dt=sklearn.tree._classes.DecisionTreeClassifier)

Visibility: public Uploaded 11-11-2024 by Continuous Integration sklearn==1.1.3 numpy>=1.17.3 scipy>=1.3.2 joblib>=1.0.0 threadpoolctl>=2.0.0 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_1.1.3
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Soft Voting/Majority Rule classifier for unfitted estimators.

Parameters

estimatorsInvoking the ``fit`` method on the ``VotingClassifier`` will fit clones of those original estimators that will be stored in the class attribute ``self.estimators_``. An estimator can be set to ``'drop'`` using :meth:`set_params` .. versionchanged:: 0.21 ``'drop'`` is accepted. Using None was deprecated in 0.22 and support was removed in 0.24 voting : {'hard', 'soft'}, default='hard' If 'hard', uses predicted class labels for majority rule voting Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiersdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "dt", "step_name": "dt"}}]
flatten_transformAffects shape of transform output only when voting='soft' If voting='soft' and flatten_transform=True, transform method returns matrix with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes)default: true
n_jobsThe number of jobs to run in parallel for ``fit`` ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context ``-1`` means using all processors. See :term:`Glossary ` for more details .. versionadded:: 0.18default: null
verboseIf True, the time elapsed while fitting will be printed as it is completed .. versionadded:: 0.23default: false
votingdefault: "hard"
weightsSequence of weights (`float` or `int`) to weight the occurrences of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`default: null

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table