Run
1

Run 1

Task 11 (Supervised Classification) kr-vs-kp Uploaded 02-07-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.5.0. test_tag_TestRun_17222852218965487 test_tag_TestRun_17222854632937806 test_tag_TestRun_1722285466294419 test_tag_TestRun_17222854692800558 test_tag_TestRun_17222854722652287 test_tag_TestRun_17222854752355626 test_tag_TestRun_17222854782676835 test_tag_TestRun_17240997617520976 test_tag_TestRun_17241000014245052 test_tag_TestRun_17241000041769495 test_tag_TestRun_1724100006898067 test_tag_TestRun_17241000096646125 test_tag_TestRun_17241000123690562 test_tag_TestRun_17241000151291027 study_96 study_166 study_319 study_320 study_321 study_322 study_323 study_324 study_325 study_326 study_327 study_331 study_332 study_361 study_362 study_363 study_367 study_368 study_369 study_370 study_371 study_372 study_373 study_374 study_516
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=s klearn.preprocessing._encoders.OneHotEncoder),svc=sklearn.svm._classes.SVC) (1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder),svc=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder),svc=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder),svc=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_force_int_remainder_colstrue
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.preprocessing._data.StandardScaler,cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbose_feature_names_outtrue
sklearn.preprocessing._data.StandardScaler(1)_copytrue
sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(1)_feature_name_combiner"concat"
sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(1)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(1)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(1)_sparse_outputtrue
sklearn.svm._classes.SVC(1)_C1.0
sklearn.svm._classes.SVC(1)_break_tiesfalse
sklearn.svm._classes.SVC(1)_cache_size200
sklearn.svm._classes.SVC(1)_class_weightnull
sklearn.svm._classes.SVC(1)_coef00.0
sklearn.svm._classes.SVC(1)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(1)_degree3
sklearn.svm._classes.SVC(1)_gamma"scale"
sklearn.svm._classes.SVC(1)_kernel"rbf"
sklearn.svm._classes.SVC(1)_max_iter-1
sklearn.svm._classes.SVC(1)_probabilityfalse
sklearn.svm._classes.SVC(1)_random_state1
sklearn.svm._classes.SVC(1)_shrinkingtrue
sklearn.svm._classes.SVC(1)_tol0.001
sklearn.svm._classes.SVC(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures