Run
10710

Run 10710

Task 307 (Supervised Classification) kc2 Uploaded 29-11-2022 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.1.2. study_2303
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(9)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(9)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(9)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(9)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(9)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(9)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(9)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(9)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(9)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(9)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(9)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(9)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(9)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(9)_random_state33852
sklearn.ensemble._forest.RandomForestClassifier(9)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(9)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8121 ± 0.1064
Per class
0.8328 ± 0.0498
Per class
0.4621 ± 0.1513
0.2539 ± 0.1396
0.2178 ± 0.0323
0.3266 ± 0.0052
0.8429 ± 0.0484
522
Per class
0.8307 ± 0.057
Per class
0.8429 ± 0.0484
0.7318 ± 0.0173
0.6668 ± 0.0958
0.4037 ± 0.0065
0.3464 ± 0.0454
0.858 ± 0.1066
0.707 ± 0.0749