Run
10711

Run 10711

Task 6 (Supervised Classification) anneal Uploaded 29-11-2022 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.Col umnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preproce ssing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated _svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklea rn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.preprocessing._encoders.OneHotEncoder(12)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(12)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(12)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(12)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(12)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(12)_sparsefalse
sklearn.ensemble._forest.RandomForestClassifier(9)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(9)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(9)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(9)_max_depth10
sklearn.ensemble._forest.RandomForestClassifier(9)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(9)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(9)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(9)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(9)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(9)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(9)_n_estimators50
sklearn.ensemble._forest.RandomForestClassifier(9)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(9)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(9)_random_state2851
sklearn.ensemble._forest.RandomForestClassifier(9)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(9)_warm_startfalse
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"median"
sklearn.impute._base.SimpleImputer(11)_verbose"deprecated"
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transform", "step_name": "transform"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_verbose_feature_names_outtrue
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "truncatedsvd", "step_name": "truncatedsvd"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_verbosefalse
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"randomized"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components2
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter5
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_oversamples10
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_power_iteration_normalizer"auto"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state29665
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures