Run
143

Run 143

Task 115 (Supervised Classification) diabetes Uploaded 29-10-2019 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.StandardScaler, boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator =sklearn.tree.tree.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.StandardScaler,boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_memorynull
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.StandardScaler,boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "boosting", "step_name": "boosting"}}]
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.StandardScaler,boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_verbosefalse
sklearn.preprocessing.data.StandardScaler(1)_copytrue
sklearn.preprocessing.data.StandardScaler(1)_with_meanfalse
sklearn.preprocessing.data.StandardScaler(1)_with_stdtrue
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_algorithm"SAMME.R"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_learning_rate1.0
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_estimators50
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_random_state39203
sklearn.tree.tree.DecisionTreeClassifier(1)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(1)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(1)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(1)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(1)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(1)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(1)_random_state62226
sklearn.tree.tree.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6646 ± 0.0488
Per class
Cross-validation details (10-fold Crossvalidation)
0.6944 ± 0.048
Per class
Cross-validation details (10-fold Crossvalidation)
0.3283 ± 0.1019
Cross-validation details (10-fold Crossvalidation)
0.2991 ± 0.1155
Cross-validation details (10-fold Crossvalidation)
0.306 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.694 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.6948 ± 0.0466
Per class
Cross-validation details (10-fold Crossvalidation)
0.694 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.6733 ± 0.1108
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.5532 ± 0.0461
Cross-validation details (10-fold Crossvalidation)
1.1605 ± 0.0975
Cross-validation details (10-fold Crossvalidation)
0.6646 ± 0.0488
Cross-validation details (10-fold Crossvalidation)