Run
149

Run 149

Task 119 (Supervised Classification) diabetes Uploaded 29-10-2019 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemb le.forest.RandomForestClassifier)(1)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random`...
sklearn.ensemble.forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(1)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(1)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(1)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(1)_n_estimators5
sklearn.ensemble.forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(1)_random_state42
sklearn.ensemble.forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(1)_warm_startfalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_cv3
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_error_score"raise-deprecating"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_iid"warn"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_n_iter10
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_n_jobsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_param_distributions{"bootstrap": [true, false], "criterion": ["gini", "entropy"], "max_depth": [3, null], "max_features": [1, 2, 3, 4]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_random_state42
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble.forest.RandomForestClassifier)(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures

0.7832
Per class
Cross-validation details (10% Holdout set)
0.7283
Per class
Cross-validation details (10% Holdout set)
0.4017
Cross-validation details (10% Holdout set)
0.2025
Cross-validation details (10% Holdout set)
0.3729
Cross-validation details (10% Holdout set)
0.4589
Cross-validation details (10% Holdout set)
0.7431
Cross-validation details (10% Holdout set)
253
Per class
Cross-validation details (10% Holdout set)
0.7396
Per class
Cross-validation details (10% Holdout set)
0.7431
Cross-validation details (10% Holdout set)
0.9463
Cross-validation details (10% Holdout set)
0.8126
Cross-validation details (10% Holdout set)
0.4813
Cross-validation details (10% Holdout set)
0.4265
Cross-validation details (10% Holdout set)
0.8862
Cross-validation details (10% Holdout set)
0.6863
Cross-validation details (10% Holdout set)