Run
215

Run 215

Task 733 (Supervised Regression) quake Uploaded 03-07-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST2cec92fbd1sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.Simple Imputer,regressor=sklearn.linear_model._base.LinearRegression)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST2cec92fbd1sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_memorynull
TEST2cec92fbd1sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "regressor", "step_name": "regressor"}}]
TEST2cec92fbd1sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_verbosefalse
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_copytrue
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST2cec92fbd1sklearn.impute._base.SimpleImputer(1)_verbose0
TEST2cec92fbd1sklearn.linear_model._base.LinearRegression(1)_copy_Xtrue
TEST2cec92fbd1sklearn.linear_model._base.LinearRegression(1)_fit_intercepttrue
TEST2cec92fbd1sklearn.linear_model._base.LinearRegression(1)_n_jobsnull
TEST2cec92fbd1sklearn.linear_model._base.LinearRegression(1)_normalizefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

0.1486 ± 0.0063
0.1491 ± 0.0067
2178
0.9962 ± 0.0102
0.1894 ± 0.0107
0.189 ± 0.0103
0.9981 ± 0.0047