Run
226

Run 226

Task 96 (Supervised Classification) credit-a Uploaded 03-07-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST8c6f45eb80sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST8c6f45eb80sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST8c6f45eb80sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST8c6f45eb80sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2, 7, 10, 13, 14]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3, 4, 5, 6, 8, 9, 11, 12]}}]
TEST8c6f45eb80sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST8c6f45eb80sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST8c6f45eb80sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST8c6f45eb80sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_copytrue
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST8c6f45eb80sklearn.impute._base.SimpleImputer(1)_verbose0
TEST8c6f45eb80sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST8c6f45eb80sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST8c6f45eb80sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST8c6f45eb80sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST8c6f45eb80sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST8c6f45eb80sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST8c6f45eb80openml.testing.CustomImputer(1)_add_indicatorfalse
TEST8c6f45eb80openml.testing.CustomImputer(1)_copytrue
TEST8c6f45eb80openml.testing.CustomImputer(1)_fill_valuenull
TEST8c6f45eb80openml.testing.CustomImputer(1)_missing_valuesNaN
TEST8c6f45eb80openml.testing.CustomImputer(1)_strategy"most_frequent"
TEST8c6f45eb80openml.testing.CustomImputer(1)_verbose0
TEST8c6f45eb80sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST8c6f45eb80sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST8c6f45eb80sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST8c6f45eb80sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST8c6f45eb80sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST8c6f45eb80sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures