Run
2264

Run 2264

Task 115 (Supervised Classification) diabetes Uploaded 17-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler ,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimat or=sklearn.tree._classes.DecisionTreeClassifier))(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~sklearn.model_selection.GridSearchCV`, refer to :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`. The example :ref:`sphx_glr_auto_exampl...
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(2)_memorynull
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "boosting", "step_name": "boosting"}}]
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(2)_verbosefalse
sklearn.preprocessing._data.StandardScaler(3)_copytrue
sklearn.preprocessing._data.StandardScaler(3)_with_meanfalse
sklearn.preprocessing._data.StandardScaler(3)_with_stdtrue
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(2)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(2)_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(2)_learning_rate1.0
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(2)_n_estimators50
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(2)_random_state58170
sklearn.tree._classes.DecisionTreeClassifier(3)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(3)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(3)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(3)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(3)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(3)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(3)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(3)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(3)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(3)_random_state4736
sklearn.tree._classes.DecisionTreeClassifier(3)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6619 ± 0.0574
Per class
0.6927 ± 0.0547
Per class
0.3237 ± 0.117
0.2962 ± 0.1285
0.3073 ± 0.0562
0.4545 ± 0.0011
0.6927 ± 0.0562
768
Per class
0.6927 ± 0.0538
Per class
0.6927 ± 0.0562
0.9331 ± 0.0032
0.6761 ± 0.1235
0.4766 ± 0.0011
0.5543 ± 0.0512
1.163 ± 0.1075
0.6619 ± 0.0574