Run
2267

Run 2267

Task 115 (Supervised Classification) diabetes Uploaded 17-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler ,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimat or=sklearn.tree._classes.DecisionTreeClassifier))(5)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final estimator only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`.
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(5)_memorynull
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(5)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "boosting", "step_name": "boosting"}}]
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,boosting=sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier))(5)_verbosefalse
sklearn.preprocessing._data.StandardScaler(6)_copytrue
sklearn.preprocessing._data.StandardScaler(6)_with_meanfalse
sklearn.preprocessing._data.StandardScaler(6)_with_stdtrue
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(5)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(5)_learning_rate1.0
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(5)_n_estimators50
sklearn.ensemble._weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree._classes.DecisionTreeClassifier)(5)_random_state29814
sklearn.tree._classes.DecisionTreeClassifier(6)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(6)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(6)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(6)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(6)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(6)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(6)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(6)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(6)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(6)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(6)_random_state2848
sklearn.tree._classes.DecisionTreeClassifier(6)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6624 ± 0.0512
Per class
0.6911 ± 0.0486
Per class
0.3227 ± 0.1052
0.2902 ± 0.1153
0.3099 ± 0.0502
0.4545 ± 0.0011
0.6901 ± 0.0502
768
Per class
0.6923 ± 0.049
Per class
0.6901 ± 0.0502
0.9331 ± 0.0032
0.6819 ± 0.1107
0.4766 ± 0.0011
0.5567 ± 0.0462
1.1679 ± 0.0973
0.6624 ± 0.0512