Run
2303

Run 2303

Task 119 (Supervised Classification) diabetes Uploaded 17-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pip eline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._c lasses.DecisionTreeClassifier))(3)Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "score_samples", "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.
sklearn.tree._classes.DecisionTreeClassifier(7)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(7)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(7)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(7)_max_depth1
sklearn.tree._classes.DecisionTreeClassifier(7)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(7)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(7)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(7)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(7)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(7)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(7)_monotonic_cstnull
sklearn.tree._classes.DecisionTreeClassifier(7)_random_state8280
sklearn.tree._classes.DecisionTreeClassifier(7)_splitter"best"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_cvnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_error_scoreNaN
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_n_jobsnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_param_grid{"classifier__max_depth": [1, 2, 3, 4, 5], "imputer__strategy": ["mean", "median"]}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_refittrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_return_train_scorefalse
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_scoringnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier))(3)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier)(3)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,classifier=sklearn.tree._classes.DecisionTreeClassifier)(3)_verbosefalse
sklearn.impute._base.SimpleImputer(3)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(3)_copytrue
sklearn.impute._base.SimpleImputer(3)_fill_valuenull
sklearn.impute._base.SimpleImputer(3)_keep_empty_featuresfalse
sklearn.impute._base.SimpleImputer(3)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(3)_strategy"mean"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures