Run
2353

Run 2353

Task 801 (Learning Curve) diabetes Uploaded 17-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST993e196f8csklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.Simple Imputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.Var ianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV (estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST993e196f8csklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_memorynull
TEST993e196f8csklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST993e196f8csklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_verbosefalse
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_copytrue
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_strategy"median"
TEST993e196f8csklearn.impute._base.SimpleImputer(1)_verbose0
TEST993e196f8csklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_cv3
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_error_scoreNaN
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_iid"deprecated"
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_iter10
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_jobsnull
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_random_state33003
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_refittrue
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_return_train_scorefalse
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_scoringnull
TEST993e196f8csklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbose0
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST993e196f8csklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8109 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3291 ± 0.0605
0.305 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6711 ± 0.0566
0.4766 ± 0.0016
0.4093 ± 0.0263
0.8588 ± 0.0541
0.7033 ± 0.0515