Run
2611

Run 2611

Task 259 (Supervised Classification) collins Uploaded 17-10-2024 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.3.2. study_130
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(1)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(1)_random_state12666
sklearn.ensemble._forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9931 ± 0.0048
Per class
0.8765 ± 0.0411
Per class
0.8695 ± 0.0569
0.6543 ± 0.0213
0.0713 ± 0.0024
0.1212 ± 0.0002
0.882 ± 0.0512
500
Per class
0.8834 ± 0.0407
Per class
0.882 ± 0.0512
3.6489 ± 0.0337
0.5881 ± 0.0201
0.246 ± 0.0003
0.1608 ± 0.0054
0.6536 ± 0.022
0.7918 ± 0.0541