Run
31671

Run 31671

Task 96 (Supervised Classification) credit-a Uploaded 30-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer .ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncode r,continuous=sklearn.impute._base.SimpleImputer),Classifier=sklearn.ensembl e._forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(11)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(11)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(11)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(11)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(11)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(11)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(11)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(11)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(11)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(11)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(11)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(11)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(11)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(11)_n_estimators10
sklearn.ensemble._forest.RandomForestClassifier(11)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(11)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(11)_random_state16152
sklearn.ensemble._forest.RandomForestClassifier(11)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(11)_warm_startfalse
sklearn.preprocessing._encoders.OneHotEncoder(17)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(17)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(17)_sparsefalse
sklearn.impute._base.SimpleImputer(15)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(15)_copytrue
sklearn.impute._base.SimpleImputer(15)_fill_valuenull
sklearn.impute._base.SimpleImputer(15)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(15)_strategy"median"
sklearn.impute._base.SimpleImputer(15)_verbose0
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Preprocessing", "step_name": "Preprocessing"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Classifier", "step_name": "Classifier"}}]
sklearn.pipeline.Pipeline(Preprocessing=sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer),Classifier=sklearn.ensemble._forest.RandomForestClassifier)(2)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "categorical", "step_name": "categorical", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "continuous", "step_name": "continuous", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(categorical=sklearn.preprocessing._encoders.OneHotEncoder,continuous=sklearn.impute._base.SimpleImputer)(2)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9278
Per class
Cross-validation details (33% Holdout set)
0.8679
Per class
Cross-validation details (33% Holdout set)
0.7358
Cross-validation details (33% Holdout set)
0.6002
Cross-validation details (33% Holdout set)
0.2145
Cross-validation details (33% Holdout set)
0.4978
Cross-validation details (33% Holdout set)
0.8678
Cross-validation details (33% Holdout set)
227
Per class
Cross-validation details (33% Holdout set)
0.8691
Per class
Cross-validation details (33% Holdout set)
0.8678
Cross-validation details (33% Holdout set)
1.0024
Cross-validation details (33% Holdout set)
0.431
Cross-validation details (33% Holdout set)
0.5008
Cross-validation details (33% Holdout set)
0.3187
Cross-validation details (33% Holdout set)
0.6362
Cross-validation details (33% Holdout set)
0.8687
Cross-validation details (33% Holdout set)