Run
31919

Run 31919

Task 96 (Supervised Classification) credit-a Uploaded 30-03-2021 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTf39c8bbc13sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTf39c8bbc13sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TESTf39c8bbc13sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TESTf39c8bbc13sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2, 7, 10, 13, 14]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3, 4, 5, 6, 8, 9, 11, 12]}}]
TESTf39c8bbc13sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TESTf39c8bbc13sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TESTf39c8bbc13sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TESTf39c8bbc13sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_copytrue
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TESTf39c8bbc13sklearn.impute._base.SimpleImputer(1)_verbose0
TESTf39c8bbc13sklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTf39c8bbc13sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TESTf39c8bbc13sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTf39c8bbc13sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TESTf39c8bbc13sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TESTf39c8bbc13sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TESTf39c8bbc13openml.testing.CustomImputer(1)_add_indicatorfalse
TESTf39c8bbc13openml.testing.CustomImputer(1)_copytrue
TESTf39c8bbc13openml.testing.CustomImputer(1)_fill_valuenull
TESTf39c8bbc13openml.testing.CustomImputer(1)_missing_valuesNaN
TESTf39c8bbc13openml.testing.CustomImputer(1)_strategy"most_frequent"
TESTf39c8bbc13openml.testing.CustomImputer(1)_verbose0
TESTf39c8bbc13sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TESTf39c8bbc13sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TESTf39c8bbc13sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TESTf39c8bbc13sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TESTf39c8bbc13sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTf39c8bbc13sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8288
Per class
Cross-validation details (33% Holdout set)
0.8283
Per class
Cross-validation details (33% Holdout set)
0.6564
Cross-validation details (33% Holdout set)
0.6542
Cross-validation details (33% Holdout set)
0.1718
Cross-validation details (33% Holdout set)
0.4978
Cross-validation details (33% Holdout set)
0.8282
Cross-validation details (33% Holdout set)
227
Per class
Cross-validation details (33% Holdout set)
0.8291
Per class
Cross-validation details (33% Holdout set)
0.8282
Cross-validation details (33% Holdout set)
1.0024
Cross-validation details (33% Holdout set)
0.3451
Cross-validation details (33% Holdout set)
0.5008
Cross-validation details (33% Holdout set)
0.4145
Cross-validation details (33% Holdout set)
0.8276
Cross-validation details (33% Holdout set)
0.8288
Cross-validation details (33% Holdout set)