Run
3473

Run 3473

Task 307 (Supervised Classification) kc2 Uploaded 01-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.1. study_464
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(2)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state56882
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.81 ± 0.1006
Per class
Cross-validation details (10-fold Crossvalidation)
0.8247 ± 0.0491
Per class
Cross-validation details (10-fold Crossvalidation)
0.4401 ± 0.1453
Cross-validation details (10-fold Crossvalidation)
0.2463 ± 0.1383
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0319
Cross-validation details (10-fold Crossvalidation)
0.3266 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.8333 ± 0.0496
Cross-validation details (10-fold Crossvalidation)
522
Per class
Cross-validation details (10-fold Crossvalidation)
0.8213 ± 0.0527
Per class
Cross-validation details (10-fold Crossvalidation)
0.8333 ± 0.0496
Cross-validation details (10-fold Crossvalidation)
0.7318 ± 0.0173
Cross-validation details (10-fold Crossvalidation)
0.6749 ± 0.0949
Cross-validation details (10-fold Crossvalidation)
0.4037 ± 0.0065
Cross-validation details (10-fold Crossvalidation)
0.3464 ± 0.0438
Cross-validation details (10-fold Crossvalidation)
0.8582 ± 0.103
Cross-validation details (10-fold Crossvalidation)
0.701 ± 0.0637
Cross-validation details (10-fold Crossvalidation)