Run
3962

Run 3962

Task 115 (Supervised Classification) diabetes Uploaded 01-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.1. study_530
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(2)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state56792
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8232 ± 0.0421
Per class
Cross-validation details (10-fold Crossvalidation)
0.761 ± 0.0619
Per class
Cross-validation details (10-fold Crossvalidation)
0.4666 ± 0.1398
Cross-validation details (10-fold Crossvalidation)
0.3097 ± 0.0584
Cross-validation details (10-fold Crossvalidation)
0.3187 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7656 ± 0.0592
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7604 ± 0.0642
Per class
Cross-validation details (10-fold Crossvalidation)
0.7656 ± 0.0592
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7013 ± 0.0499
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4015 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
0.8423 ± 0.0541
Cross-validation details (10-fold Crossvalidation)
0.7256 ± 0.0686
Cross-validation details (10-fold Crossvalidation)