Run
4

Run 4

Task 733 (Supervised Regression) quake Uploaded 02-07-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.5.0. study_96 study_166 study_321 study_322 study_323 study_324 study_325 study_326 study_327 study_363 study_369 study_370 study_371 study_372 study_373 study_374 study_516
Issue #Downvotes for this reason By


Flow

TEST4d8594293fsklearn.pipeline.Pipeline(imputer=sklearn.impute._base.Simple Imputer,regressor=sklearn.linear_model._base.LinearRegression)(1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
TEST4d8594293fsklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_memorynull
TEST4d8594293fsklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "regressor", "step_name": "regressor"}}]
TEST4d8594293fsklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,regressor=sklearn.linear_model._base.LinearRegression)(1)_verbosefalse
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_copytrue
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_keep_empty_featuresfalse
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST4d8594293fsklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST4d8594293fsklearn.linear_model._base.LinearRegression(1)_copy_Xtrue
TEST4d8594293fsklearn.linear_model._base.LinearRegression(1)_fit_intercepttrue
TEST4d8594293fsklearn.linear_model._base.LinearRegression(1)_n_jobsnull
TEST4d8594293fsklearn.linear_model._base.LinearRegression(1)_positivefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

7 Evaluation measures

0.1486 ± 0.0063
0.1491 ± 0.0067
2178
0.9962 ± 0.0102
0.1894 ± 0.0107
0.189 ± 0.0103
0.9981 ± 0.0047