Run
4100

Run 4100

Task 801 (Learning Curve) diabetes Uploaded 05-11-2019 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST30ec193b91sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.Simple Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.Vari anceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV( estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
TEST30ec193b91sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_memorynull
TEST30ec193b91sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_steps[{"value": {"step_name": "Imputer", "key": "Imputer"}, "oml-python:serialized_object": "component_reference"}, {"value": {"step_name": "VarianceThreshold", "key": "VarianceThreshold"}, "oml-python:serialized_object": "component_reference"}, {"value": {"step_name": "Estimator", "key": "Estimator"}, "oml-python:serialized_object": "component_reference"}]
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_copytrue
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_strategy"median"
TEST30ec193b91sklearn.impute._base.SimpleImputer(1)_verbose0
TEST30ec193b91sklearn.feature_selection.variance_threshold.VarianceThreshold(1)_threshold0.0
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_cv3
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_error_score"raise-deprecating"
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_fit_paramsnull
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_iid"warn"
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_iter10
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_jobsnull
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_random_state33003
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_refittrue
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_return_train_score"warn"
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_scoringnull
TEST30ec193b91sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_verbose0
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_class_weightnull
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_criterion"gini"
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_max_depthnull
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_max_featuresnull
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_leaf1
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_split2
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_presortfalse
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_random_state62501
TEST30ec193b91sklearn.tree.tree.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8108 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3288 ± 0.0604
0.3052 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6714 ± 0.0566
0.4766 ± 0.0016
0.4094 ± 0.0263
0.8589 ± 0.0541
0.7033 ± 0.0515