Run
4639

Run 4639

Task 11 (Supervised Classification) kr-vs-kp Uploaded 18-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(enc=sklearn.preprocessing._encoders.OneHotEncoder ,rs=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.en semble._forest.RandomForestClassifier))(10)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
sklearn.preprocessing._encoders.OneHotEncoder(10)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(10)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(10)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(10)_feature_name_combiner"concat"
sklearn.preprocessing._encoders.OneHotEncoder(10)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(10)_max_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(10)_min_frequencynull
sklearn.preprocessing._encoders.OneHotEncoder(10)_sparse_outputtrue
sklearn.ensemble._forest.RandomForestClassifier(10)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(10)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(10)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(10)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(10)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(10)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(10)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(10)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(10)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(10)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_monotonic_cstnull
sklearn.ensemble._forest.RandomForestClassifier(10)_n_estimators5
sklearn.ensemble._forest.RandomForestClassifier(10)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(10)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(10)_random_state33003
sklearn.ensemble._forest.RandomForestClassifier(10)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(10)_warm_startfalse
sklearn.pipeline.Pipeline(enc=sklearn.preprocessing._encoders.OneHotEncoder,rs=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier))(10)_memorynull
sklearn.pipeline.Pipeline(enc=sklearn.preprocessing._encoders.OneHotEncoder,rs=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier))(10)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "enc", "step_name": "enc"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "rs", "step_name": "rs"}}]
sklearn.pipeline.Pipeline(enc=sklearn.preprocessing._encoders.OneHotEncoder,rs=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier))(10)_verbosefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_cv{"oml-python:serialized_object": "cv_object", "value": {"name": "sklearn.model_selection._split.StratifiedKFold", "parameters": {"n_splits": "2", "random_state": "62501", "shuffle": "true"}}}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_error_scoreNaN
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_n_iter2
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_n_jobsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_param_distributions{"bootstrap": [true, false], "criterion": ["gini", "entropy"], "max_depth": [3, null], "max_features": [1, 2, 3, 4], "min_samples_leaf": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_random_state12172
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(10)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures