Run
4641

Run 4641

Task 801 (Learning Curve) diabetes Uploaded 18-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTaf05f1abe0sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data. StandardScaler,dummy=sklearn.dummy.DummyClassifier)(1)A sequence of data transformers with an optional final predictor. `Pipeline` allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final :term:`predictor` for predictive modeling. Intermediate steps of the pipeline must be 'transforms', that is, they must implement `fit` and `transform` methods. The final :term:`estimator` only needs to implement `fit`. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a `'__'`, as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to `'passthrough'` or `None`. For an example use case of `Pipeline` combined with :class:`~s...
TESTaf05f1abe0sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,dummy=sklearn.dummy.DummyClassifier)(1)_memorynull
TESTaf05f1abe0sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,dummy=sklearn.dummy.DummyClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "dummy", "step_name": "dummy"}}]
TESTaf05f1abe0sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing._data.StandardScaler,dummy=sklearn.dummy.DummyClassifier)(1)_verbosefalse
TESTaf05f1abe0sklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTaf05f1abe0sklearn.preprocessing._data.StandardScaler(1)_with_meanfalse
TESTaf05f1abe0sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTaf05f1abe0sklearn.dummy.DummyClassifier(1)_constantnull
TESTaf05f1abe0sklearn.dummy.DummyClassifier(1)_random_state62501
TESTaf05f1abe0sklearn.dummy.DummyClassifier(1)_strategy"prior"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4952
Per class
0.0002 ± 0.0006
0.4544 ± 0.0014
0.4545 ± 0.0015
0.651 ± 0.0051
768
Per class
0.651 ± 0.0051
0.9331 ± 0.0046
0.9998 ± 0.0004
0.4766 ± 0.0016
0.4766 ± 0.0016
1 ± 0
0.5