Run
4648

Run 4648

Task 119 (Supervised Classification) diabetes Uploaded 18-10-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(10)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. Trees in the forest use the best split strategy, i.e. equivalent to passing `splitter="best"` to the underlying :class:`~sklearn.tree.DecisionTreeRegressor`. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(10)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(10)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(10)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(10)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(10)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(10)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(10)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(10)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(10)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(10)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(10)_monotonic_cstnull
sklearn.ensemble._forest.RandomForestClassifier(10)_n_estimators33
sklearn.ensemble._forest.RandomForestClassifier(10)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(10)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(10)_random_state17308
sklearn.ensemble._forest.RandomForestClassifier(10)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(10)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures