Run
6610

Run 6610

Task 801 (Learning Curve) diabetes Uploaded 12-11-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTb752ebead6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.Simple Imputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.Var ianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV (estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTb752ebead6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_memorynull
TESTb752ebead6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TESTb752ebead6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_verbosefalse
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_copytrue
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_strategy"median"
TESTb752ebead6sklearn.impute._base.SimpleImputer(1)_verbose0
TESTb752ebead6sklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_cv3
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_error_scoreNaN
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_iid"deprecated"
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_iter10
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_jobsnull
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_random_state33003
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_refittrue
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_return_train_scorefalse
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_scoringnull
TESTb752ebead6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbose0
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTb752ebead6sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8109 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3291 ± 0.0605
0.305 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6711 ± 0.0566
0.4766 ± 0.0016
0.4093 ± 0.0263
0.8588 ± 0.0541
0.7033 ± 0.0515