Run
664

Run 664

Task 119 (Supervised Classification) diabetes Uploaded 03-07-2024 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST02666bb74csklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST02666bb74csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST02666bb74csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST02666bb74csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TEST02666bb74csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST02666bb74csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST02666bb74csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST02666bb74csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_copytrue
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST02666bb74csklearn.impute._base.SimpleImputer(1)_verbose0
TEST02666bb74csklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST02666bb74csklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST02666bb74csklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST02666bb74csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST02666bb74csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST02666bb74csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST02666bb74copenml.testing.CustomImputer(1)_add_indicatorfalse
TEST02666bb74copenml.testing.CustomImputer(1)_copytrue
TEST02666bb74copenml.testing.CustomImputer(1)_fill_valuenull
TEST02666bb74copenml.testing.CustomImputer(1)_missing_valuesNaN
TEST02666bb74copenml.testing.CustomImputer(1)_strategy"most_frequent"
TEST02666bb74copenml.testing.CustomImputer(1)_verbose0
TEST02666bb74csklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST02666bb74csklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST02666bb74csklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST02666bb74csklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST02666bb74csklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST02666bb74csklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures