Run
6775

Run 6775

Task 307 (Supervised Classification) kc2 Uploaded 15-11-2024 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.3.2. study_347
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(1)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(1)_random_state26884
sklearn.ensemble._forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8082 ± 0.0998
Per class
0.8288 ± 0.0452
Per class
0.4489 ± 0.1396
0.2534 ± 0.1409
0.2179 ± 0.0323
0.3266 ± 0.0052
0.8391 ± 0.0432
522
Per class
0.8263 ± 0.0512
Per class
0.8391 ± 0.0432
0.7318 ± 0.0173
0.6672 ± 0.0967
0.4037 ± 0.0065
0.3458 ± 0.045
0.8566 ± 0.1064
0.7011 ± 0.0631