Run
7057

Run 7057

Task 6 (Supervised Classification) anneal Uploaded 02-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.Col umnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preproce ssing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated _svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklea rn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_depth10
sklearn.ensemble._forest.RandomForestClassifier(1)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_n_estimators50
sklearn.ensemble._forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(1)_random_state13172
sklearn.ensemble._forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(1)_warm_startfalse
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transform", "step_name": "transform"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(transform=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer),estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD),cont=sklearn.impute._base.SimpleImputer)(1)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "truncatedsvd", "step_name": "truncatedsvd"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,truncatedsvd=sklearn.decomposition._truncated_svd.TruncatedSVD)(1)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsefalse
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_algorithm"randomized"
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_components2
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_n_iter5
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_random_state45008
sklearn.decomposition._truncated_svd.TruncatedSVD(1)_tol0.0
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.9961
Per class
Cross-validation details (33% Holdout set)
0.886
Cross-validation details (33% Holdout set)
0.8346
Cross-validation details (33% Holdout set)
0.036
Cross-validation details (33% Holdout set)
0.141
Cross-validation details (33% Holdout set)
0.9527
Cross-validation details (33% Holdout set)
296
Per class
Cross-validation details (33% Holdout set)
0.9527
Cross-validation details (33% Holdout set)
1.309
Cross-validation details (33% Holdout set)
0.2551
Cross-validation details (33% Holdout set)
0.2709
Cross-validation details (33% Holdout set)
0.109
Cross-validation details (33% Holdout set)
0.4023
Cross-validation details (33% Holdout set)