Run
7348

Run 7348

Task 259 (Supervised Classification) collins Uploaded 12-08-2024 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_1.3.2. study_349
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(2)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree. For a comparison between tree-based ensemble models see the example :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features"sqrt"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state41681
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9951 ± 0.0022
Per class
0.8679 ± 0.0793
Per class
0.8652 ± 0.0474
0.675 ± 0.0196
0.0685 ± 0.0026
0.1212 ± 0.0002
0.878 ± 0.0426
500
Per class
0.8762 ± 0.0548
Per class
0.878 ± 0.0426
3.6489 ± 0.0337
0.5656 ± 0.0214
0.246 ± 0.0003
0.1557 ± 0.0056
0.6327 ± 0.0229
0.767 ± 0.0441