Run
8397

Run 8397

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST2fa4dc7e4csklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST2fa4dc7e4csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST2fa4dc7e4csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST2fa4dc7e4csklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2, 7, 10, 13, 14]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3, 4, 5, 6, 8, 9, 11, 12]}}]
TEST2fa4dc7e4csklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST2fa4dc7e4csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST2fa4dc7e4csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST2fa4dc7e4csklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_copytrue
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST2fa4dc7e4csklearn.impute._base.SimpleImputer(1)_verbose0
TEST2fa4dc7e4csklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST2fa4dc7e4csklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST2fa4dc7e4csklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST2fa4dc7e4csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST2fa4dc7e4csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST2fa4dc7e4csklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_add_indicatorfalse
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_copytrue
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_fill_valuenull
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_missing_valuesNaN
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_strategy"most_frequent"
TEST2fa4dc7e4copenml.testing.CustomImputer(1)_verbose0
TEST2fa4dc7e4csklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST2fa4dc7e4csklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST2fa4dc7e4csklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST2fa4dc7e4csklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST2fa4dc7e4csklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST2fa4dc7e4csklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures